scholarly journals Water Requirement Analysis of Paddy Field Irrigation System in Diversified Land Use Area

10.5109/24319 ◽  
1999 ◽  
Vol 44 (1/2) ◽  
pp. 175-187
Author(s):  
Hairul Basri ◽  
Yoshisuke Nakano ◽  
Masaharu Kuroda ◽  
Tetsuro Fukuda ◽  
Tamotsu Funakoshi
2019 ◽  
Vol 7 (1) ◽  
pp. 39-58
Author(s):  
Lola Cassiophea

This district of Katigan is a small part of the entire area and land surveys for the purposes of paddy field printing of the Central Kalimantan Provincial Agriculture Office. This activity aims to find the feasibility of irrigation potential that will flow through the paddy fields that have been in clean and clear condition in terms of the area, included in the category of decent land for rice crops, and the existence of adequate water sources to flow the rice fields. The water requirement for plants is basically obtainable directly from the rain water, the rainfall each season will not be the same. Therefore, we need a way to manage water with a need to manage water optimally, one of them is the use of irrigation system. The planned irrigation system for the Katingan irrigation area and its surroundings is a gravity irrigation system. The irrigation network used is a technical irrigation network. The total irrigation area is 352,6 Ha. The planned plot is 3 plots with the area of each plot between 3,6 ha to 99,9 Ha. The water requirement per hectare before adjusting to the efficiency of each channel is planned to be 1.2 ltr/s/ ha.


2019 ◽  
Vol 5 (2) ◽  
pp. 48-53
Author(s):  
Afrital Rezki, S.Pd., M.Si ◽  
Erna Juita ◽  
Dasrizal Dasrizal ◽  
Arie Zella Putra Ulni

Perkembangan penggunaan tanah bergerak horisontal secara spasial ke arah wilayah yang mudah diusahakan. Penggunaan tanah juga bergerak secara vertikal dalam rangka menaikkan mutunya. Penelitian ini bertujuan untuk menganalisis pola penggunaan lahan, bagaimana manajemen penggunaan lahan di satu wilayah berdasarkan batas Nagari. Metode yang digunakan adalah analsisis spasial dengan interpretasi citra penginderaan jauh, survey lapangan, dan analisis deskriptif. Pertumbuhan pemukiman Nagari Sungai Sariak Kecamatan VII Koto Kabupaten Padang Pariaman mengakibatkan pemanfaatan ruang menjadi tumpang tindih. Diperlukan cara-cara pengelolaan dan managemen penggunaan tanah dalam rangka pembangunan berkelanjutan yang menaikkan taraf hidup masyarakat dan tidak menimbulkan kerugian lingkungan.Terdapat 9 jenis penggunaan lahan yang ada di Nagari Sungai Sariak. Penggunaan lahan tersebut adalah Primary Forest, Secondary Forest, Paddy Field, Settlement, Mixed Plantations, Crop Fields, Water Bodies, Bushes, dan Plantations. Penggunaan lahan yang paling luas di Nagari Sungai Sariak adalah jenis penggunaan lahan Primary Forest, sebesar 48% dari total luas wilayah Nagari Sungai Sariak. Pada tahun 2011 sampai tahun 2016, penggunaan lahan paling luas terjadi pada penggunaan lahan jenis Primary Forest yang kemudian menjadi Mixed Plantations. Land use Changes moved horizontally spatially towards areas that are easily cultivated. The land use also moves vertically in order to increase its quality. This study aims to analyze land use patterns, how land use management in one area is based on Nagari boundaries. The method used is spatial analysis with interpretation of remote sensing images, field surveys, and descriptive analysis. The growth of Nagari Sungai Sariak in Kecamatan VII Koto, Kabupaten Padang Pariaman resulted in overlapping use of space. Management methods are needed and management of land use in the framework of sustainable development that raises the standard of living of the community and does not cause environmental losses. There are 9 types of land use in the Nagari Sungai Sariak. The land uses are Primary Forest, Secondary Forest, Paddy Field, Settlement, Mixed Plantations, Crop Fields, Water Bodies, Bushes, and Plantations. The most extensive land use in Nagari Sungai Sariak is the type of Primary Forest land use, amounting to 48% of the total area of the Nagari Sungai Sariak. From 2011 to 2016, the most extensive land use occurred in Primary Forest land uses which later became Mixed Plantations.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 353
Author(s):  
Ya-Wen Chiueh ◽  
Chih-Hung Tan ◽  
Hsiang-Yi Hsu

In the face of climate change, extreme climates are becoming more frequent. There were severe droughts in Taiwan in 2020, 2014–2015, and 2002. In these years, the paddy fields were kept fallow to save water and transfer agricultural water to non-agricultural use. On the other hand, with global warming, the existence of paddy fields may be one of the natural solutions to regional temperature mitigation. This study used remote sensing to quantify the difference in temperature between paddy fields and urban areas. The result of overall surface temperature deductive analysis revealed that the temperature in the whole Taoyuan research area was 1.2 °C higher in 2002 than in 2003 because of fallowing of the paddy field, while in the Hsinchu research area, it was 1.5 °C higher in 2002 than in 2003, due to the same reason described above. In terms of the difference in land use, for the Hsinchu research area, the surface temperature deductive result showed that the average paddy field temperature in 2002 was 22.3 °C (sample area average), which was 7.7 °C lower than that of the building and road point and 4.3 °C lower than that of the bare land point. The average paddy field temperature in 2003 was 19.2 °C (sample area average), which was 10.1 °C lower than that of the building and road point and 8.3 °C lower than that of the bare land point. Then this study evaluated the economic valuation of the paddy field cooling effect using the contingent valuation method. Through the paddy field cooling effect and in the face of worsening extreme global climate, the willingness to pay (WTP) of the respondents in Taiwan for a decrease of 1 °C with regard to the regional microclimate was evaluated. It was found that people in Taiwan are willing to pay an extra 8.89 USD/per kg rice/year for the paddy for a decrease in temperature by 1 °C in the regional microclimate due to the paddy field. Furthermore, this study applied the benefits transfer method to evaluate the value of a decrease of 1 °C in the regional microclimate in Taiwan. The value of a decrease of 1 °C in the regional microclimate in Taiwan is 9,693,144,279 USD/year. In this regard, the economic value of 1 °C must not be underestimated. In conclusion, more caution is needed while making decisions to change the land use of paddy fields to other land uses.


2020 ◽  
Vol 12 (5) ◽  
pp. 2094
Author(s):  
Di Zhao ◽  
Junyu Dong ◽  
Shuping Ji ◽  
Miansong Huang ◽  
Quan Quan ◽  
...  

Soil organic carbon (SOC) concentration is closely related to soil quality and climate change. The objectives of this study were to estimate the effects of contemporary land use on SOC concentrations at 0–20 cm depths, and to investigate the dynamics of SOC in paddy-field soil and dry-land soil after their conversion from natural wetlands (20 and 30 years ago). We investigated the dissolved organic carbon (DOC), light fraction organic carbon (LFOC), heavy fraction organic carbon (HFOC), and other soil properties (i.e., moisture content, bulk density, pH, clay, sand, silt, available phosphorous, light fraction nitrogen, and heavy fraction nitrogen) in natural wetlands, constructed wetlands, fishponds, paddy fields, and soybean fields. The results indicated that the content of DOC increased 17% in constructed wetland and decreased 39% in fishponds, and the content of HFOC in constructed wetland and fishponds increased 50% and 8%, respectively, compared with that in natural wetlands at 0–20 cm. After the conversion of a wetland, the content of HFOC increased 72% in the paddy fields and decreased 62% in the dry land, while the content of DOC and LFOC decreased in both types. In the paddy fields, LFOC and HFOC content in the topmost 0.2 m of the soil layer was significantly higher compared to the layer below (from 0.2 to 0.6 m), and there were no significant differences observed in the dry land. The findings suggest that the paddy fields can sequester organic carbon through the accumulation of HFOC. However, the HFOC content decreased 22% after 10 years of cultivation with the decrease of clay content, indicating that paddy fields need to favor clay accumulation for the purpose of enhancing carbon sequestration in the paddy fields.


2005 ◽  
Vol 51 (3-4) ◽  
pp. 151-157 ◽  
Author(s):  
Y.W. Feng ◽  
I. Yoshinaga ◽  
E. Shiratani ◽  
T. Hitomi ◽  
H. Hasebe

We studied nutrient balance in a paddy field that had a recycling irrigation system and evaluated the effect of the irrigation system on nutrient balance during the irrigation period, from April to August 2002. Chemical fertilizer was the main input of phosphorus; the soil absorbed about 56% of it. The amount of nitrogen supplied by the irrigation system was higher than in a representative paddy field, and the amount of nitrogen fertilizer used was decreased because the irrigation water was partly reused. About 20% of applied nitrogen was lost by denitrification. The net outflows of phosphorus and nitrogen were −0.37 and −3.98 kg ha−1, respectively. These results indicate that our study paddy field performed well in removing phosphorus and nitrogen compounds from runoff water. A recycling irrigation system can be considered an effective way of reducing the amounts of water and fertilizer used and reducing the outflow nutrients.


2021 ◽  
Vol 13 (3) ◽  
pp. 1107
Author(s):  
Martina Slámová ◽  
Juraj Hreško ◽  
František Petrovič ◽  
Henrich Grežo

Water meadows or flooded meadows are known from many European countries. A historical irrigation system—catchworks—was identified in only one locality in Slovakia. This article brings a methodical approach to the identification of catchworks on mountain slopes. The main aim was to delineate catchworks using terrain and land use geospatial data intended to supplement existing data on catchworks from the field survey. The identification of shallow and narrow channels in the field is difficult, and their detection in a digital terrain model (DTM) and orthomosaic photos is also challenging. A detailed DTM elaborated from laser scanning data was not available. Therefore, we employed break lines of a Triangulated Irregular Network (TIN) model created by EUROSENSE Ltd. 2017, Bratislava, Slovakia. to determine microtopographic features on mountain slopes. Orthomosaics with adjusted red (R) green (G) and blue (B) band thresholds (digital numbers) in a time sequence of 16 years (2002–2018) and the Normalized Green-Red Difference Index (NGRDI) (2018) determined vital herbaceous vegetation and higher biomass. In both cases, the vegetation inside wet functional catchworks was differently coloured from the surroundings. In the case of dry catchworks, the identification relied only on microtopography features. The length of catchworks mapped in the field (1939.12 m; 2013) was supplied with potential catchworks detected from geospatial data (2877.18; 2018) and their total length in the study area increased above 59.74% (4816.30 m). Real and potential catchworks predominantly occupied historical grassland (meadows and pastures) (1952–1957) (4430.31; 91.99%). This result corresponds with the findings of foreign studies referring that catchworks on mountain slopes were related to livestock activities. They are important elements of sustainable land use with a water retention function in traditional agricultural landscapes.


2020 ◽  
Vol 146 ◽  
pp. 103351 ◽  
Author(s):  
Xin Li ◽  
Huihui Zhang ◽  
Minglong Sun ◽  
Nan Xu ◽  
Guangyu Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document