scholarly journals Optimal Treatment Combination for Dishwashing Liquid Soap based on Waste Cooking Oil According to The Requirement of Indonesian Quality Standards

Evergreen ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 492-498
Author(s):  
Sri Hartini ◽  
Yunda Fiantika ◽  
Yusuf Widharto ◽  
Muhammad Hisjam
2019 ◽  
Vol 1 (2) ◽  
pp. 67-74
Author(s):  
Evelyn Evelyn ◽  
Edy Saputra ◽  
Komalasari Komalasari ◽  
Syelvia Putri Utami

Cooking oil that has been used more than once is not good for health due to exposure to carcinogens. Waste cooking oil causes pollution to the environment. Waste cooking oil can be used as a raw material for making liquid soap. The objective of this activity was to introduce the knowledge and train Batu Basurat community in making dishwashing-liquid soap from waste cooking oil. The method consists of location survey, training preparation, interactive training, monitoring, and evaluation. Dishwashing-liquid soap was made by mixing preheated waste cooking oil and potassium hydroxide (KOH) at 60-70 °C for one hour until trace was formed. Then, the mixture was kept agitated every 15 minutes for 2-3 hours until it becomes more solidified and transparent. Liquid soap was made by dissolving in warm water and addition of lemon essence as a deodorizer. Batu Basurat villagers showed a great interest in the activity, showing by enthusiasm and involvement in the training. Evaluation results showed that 100% community understood on making homemade dishwashing-liquid soap and 90% community agreed that liquid soap from waste cooking oil has a commercial potential, which could increase entrepreneurship ability and economic growth of Batu Bersurat villagers.


CORD ◽  
2013 ◽  
Vol 29 (2) ◽  
pp. 12
Author(s):  
Rizal Alamsyah

Study was conducted on coco peat as a low emission pellet form biomass fuel alternative to produce synthetic gas (syngas) through gasification process in use for other processes. Coco peat was first screened and formulated with other materials such as coco peat, starch, and waste cooking oil. These materials were mixed and pelletized using a pelletizer to form coco peat pellet. It was burned on an updraft gasifier to produce synthetic gas (syngas) and then streamed to a stove through a pipe. The syngas was then split and burned and the heat generated was used for boiling water and for drying agricultural products.  Air quality around the stove (emission test) was measured and analyzed when gasification took place. The best results of coco peat pellet were made from 85% of coco peat waste, 5% starch (binder), and 10% of waste cooking oil with stronger texture and shiny surface. The experimental gasification using updraft gasifier exhibited better result when half of the volume of gasifier was filled with 5 kg pellet and the syngas produced can be used for 3.5 hours drying and boiling. Air quality surrounding the stove was tested during gasification process. It was done based on the Indonesian Environmental Regulation issued by Indonesian the Ministry of Environment on Standards (KEP-13/MENLH/3/1995 dated March 7th, 1995) regarding standard air quality from static matter and covers NH3, Cl2, HCl, HF, NO2, particles, SO2 and H2S parameters.  The result of measurements indicated that all parameters meet the quality standards) including CO and CO2 at 0.0001 mg/kg.


Author(s):  
Dewa Ayu Anom Yuarini ◽  
Ganda Putra ◽  
AAPA Suryawan Wiranatha

Waste cooking oil or waste cooking oil (WCO) is the remaining oil (or by-products) produced during food frying. In 2019, the cooking oil consumption in Bali Province was 4,735,057 L/month and the WCO produced was estimated about 3,314,540 L/month. The Government of Bali plans to manage WCO in an integrated manner WCO in an integrated manner by processing it as derivative products with economic value. The study aimed to transform WCO into high-value added products (i.e. aromatherapy candles, liquid soap, and biodiesel), and to analyze their economy valued added. The Hayami method was used to determine the economyvalue added of each product. The results showed that WCO was most widely used in producing biodiesel (84%), candle (17%), and liquid soap (10%). Based on the Hayami method, the added value from candle products was IDR. 4,838 / kg (or added value ratio of 9.68%), was classified as a low added product. The added value of liquid soap was IDR 8,495/kg (or added value ratio of 47.38%), classified as a high added value product. While, biodiesel products generating the added value of IDR 2,363/kg (or added value ratio of 25.57%), classified as a medium added value product.


2008 ◽  
Vol 4 (4) ◽  
pp. 318-323 ◽  
Author(s):  
Hirotsugu KAMAHARA ◽  
Shun YAMAGUCHI ◽  
Ryuichi TACHIBANA ◽  
Naohiro GOTO ◽  
Koichi FUJIE

Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


2014 ◽  
Vol 3 (10) ◽  
pp. 3419
Author(s):  
Mohan Reddy Nalabolu* ◽  
Varaprasad Bobbarala ◽  
Mahesh Kandula

At the present moment worldwide waning fossil fuel resources as well as the tendency for developing new renewable biofuels have shifted the interest of the society towards finding novel alternative fuel sources. Biofuels have been put forward as one of a range of alternatives with lower emissions and a higher degree of fuel security and gives potential opportunities for rural and regional communities. Biodiesel has a great potential as an alternative diesel fuel. In this work, biodiesel was prepared from waste cooking oil it was converted into biodiesel through single step transesterification. Methanol with Potassium hydroxide as a catalyst was used for the transesterification process. The biodiesel was characterized by its fuel properties including acid value, cloud and pour points, water content, sediments, oxidation stability, carbon residue, flash point, kinematic viscosity, density according to IS: 15607-05 standards. The viscosity of the waste cooking oil biodiesel was found to be 4.05 mm2/sec at 400C. Flash point was found to be 1280C, water and sediment was 236mg/kg, 0 % respectively, carbon residue was 0.017%, total acid value was 0.2 mgKOH/g, cloud point was 40C and pour point was 120C. The results showed that one step transesterification was better and resulted in higher yield and better fuel properties. The research demonstrated that biodiesel obtained under optimum conditions from waste cooking oil was of good quality and could be used as a diesel fuel.


Author(s):  
Yang Li ◽  
Zhenzhen Cheng ◽  
Chunlei Zhao ◽  
Cong Gao ◽  
Wei Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document