scholarly journals Low Power, Low Noise Amplifiers Design and Analysis for RF Receiver Front end Using 90NM CMOS Technology Used for WIMAX Applications

2016 ◽  
Vol 7 (1) ◽  
pp. 09-19
Author(s):  
Ramana Reddy M ◽  
Murthy Sharma N S ◽  
Chandra Sekhar P
2011 ◽  
Vol 3 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Michael Kraemer ◽  
Daniela Dragomirescu ◽  
Robert Plana

The research on the design of receiver front-ends for very high data-rate communication in the 60 GHz band in nanoscale Complementary Metal Oxide Semiconductor (CMOS) technologies is going on for some time now. Although a multitude of 60 GHz front-ends have been published in recent years, they are not consequently optimized for low power consumption. Thus, these front-ends dissipate too much power for battery-powered applications like handheld devices, mobile phones, and wireless sensor networks. This article describes the design of a direct conversion receiver front-end that addresses the issue of power consumption, while at the same time permitting low cost (due to area minimization by the use of spiral inductors). It is implemented in a 65 nm CMOS technology. The realized front-end achieves a record power consumption of only 43 mW including low-noise amplifier (LNA), mixer, a voltage controlled oscillator (VCO), a local oscillator (LO) buffer, and a baseband buffer (without this latter buffer the power consumption is even lower, only 29 mW). Its pad-limited size is 0.55 × 1 mm2. At the same time, the front-end achieves state-of-the-art performance with respect to its other properties: Its maximum measured power conversion gain is 30 dB, the RF and IF bandwidths are 56.5–61.5 and 0–1.5 GHz, respectively, its measured minimum noise figure is 9.2 dB, and its measured IP−1 dB is −36 dBm.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 291
Author(s):  
Fang Han ◽  
Jian Gao ◽  
Xiaoran Li ◽  
Zhiming Chen

A four-channel receiver front-end is designed and implemented for interference- and jamming-robust global navigation satellite system (GNSS) in a 0.18-μm CMOS technology. The front-end consists of four identical RF-to-IF signal paths including low-noise amplifiers (LNAs), mixers and IF amplifiers. In addition, it also includes a phase-locked loop (PLL), which synthesizes the local oscillator (LO) signal, and a serial peripheral interface (SPI) for parameter adjustment. To improve the interference and jamming robustness, a novel linearity improvement technology and LO duty cycle adjustment method are applied in LNA and mixer design, respectively. The receiver achieves a gain of 40 dB, an input-referred third-order intercept point (IIP3) of −8 dBm and a jammer-to-signal power ratio (JSR) of 72 dB under 1.8-V and 3.3-V supply, while occupying a 4 × 5 mm2 die area including the electrostatic discharge (ESD) I/O pads.


2010 ◽  
Vol 22 (04) ◽  
pp. 301-306 ◽  
Author(s):  
Mohammad Hossein Zarifi ◽  
Javad Frounchi ◽  
Mohammad A. Tinati ◽  
Shahin Farshchi ◽  
Jack W. Judy

Monitoring the electrical activities of a large number of neurons in vertebrates' central nervous system in vivo through hundreds of parallel channels without interferring in their natural functions is a neuroscientist's interest. Value of this information in both scientific and clinical contexts, especially in expansion of brain–computer interfaces, is extremely significant. Therefore, low-noise amplifiers are needed with filtering capability on the front end to amplify the desired signals and eliminate direct current baseline shifts. Hence, size and power consumption need to be minimized to reduce trauma and heat dissipation, which can result in tissue damage for human applications and the system needs to be implantable and wireless. The practical solution for developing such systems is system-on-a-chip, based on ultra-low-power mixed-mode and wideband RFIC designs. They, however, impose a number of challenges that may require nontraditional solutions. In this paper, we present a fully differential low-power low-noise preamplifier suitable for recording biological signals, from a few mHz up to 10 kHz. This amplifier has a bandpass filter that is tunable between 10 mHz and 10 kHz, and has been designed and simulated in a standard 90-nm CMOS process. The circuit consumes 10 μW from a 1.2 V supply and provides a gain of 40 dB and an output swing of ±0.5 V with a total harmonic distortion of less than 0.5%. The total input-referred noise level is 4.6 μV integrating the noise over 0.01 Hz to 10 kHz.


2013 ◽  
Vol 6 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Andrea Malignaggi ◽  
Amin Hamidian ◽  
Georg Boeck

The present paper presents a fully differential 60 GHz four stages low-noise amplifier for wireless applications. The amplifier has been optimized for low-noise, high-gain, and low-power consumption, and implemented in a 90 nm low-power CMOS technology. Matching and common-mode rejection networks have been realized using shielded coplanar transmission lines. The amplifier achieves a peak small-signal gain of 21.3 dB and an average noise figure of 5.4 dB along with power consumption of 30 mW and occupying only 0.38 mm2pads included. The detailed design procedure and the achieved measurement results are presented in this work.


2021 ◽  
Author(s):  
Matthew Al Disi ◽  
Alireza Mohammad Zaki ◽  
Qinwen Fan ◽  
Stoyan Nihtianov

Sign in / Sign up

Export Citation Format

Share Document