scholarly journals Design of a very low-power, low-cost 60 GHz receiver front-end implemented in 65 nm CMOS technology

2011 ◽  
Vol 3 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Michael Kraemer ◽  
Daniela Dragomirescu ◽  
Robert Plana

The research on the design of receiver front-ends for very high data-rate communication in the 60 GHz band in nanoscale Complementary Metal Oxide Semiconductor (CMOS) technologies is going on for some time now. Although a multitude of 60 GHz front-ends have been published in recent years, they are not consequently optimized for low power consumption. Thus, these front-ends dissipate too much power for battery-powered applications like handheld devices, mobile phones, and wireless sensor networks. This article describes the design of a direct conversion receiver front-end that addresses the issue of power consumption, while at the same time permitting low cost (due to area minimization by the use of spiral inductors). It is implemented in a 65 nm CMOS technology. The realized front-end achieves a record power consumption of only 43 mW including low-noise amplifier (LNA), mixer, a voltage controlled oscillator (VCO), a local oscillator (LO) buffer, and a baseband buffer (without this latter buffer the power consumption is even lower, only 29 mW). Its pad-limited size is 0.55 × 1 mm2. At the same time, the front-end achieves state-of-the-art performance with respect to its other properties: Its maximum measured power conversion gain is 30 dB, the RF and IF bandwidths are 56.5–61.5 and 0–1.5 GHz, respectively, its measured minimum noise figure is 9.2 dB, and its measured IP−1 dB is −36 dBm.

2013 ◽  
Vol 6 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Andrea Malignaggi ◽  
Amin Hamidian ◽  
Georg Boeck

The present paper presents a fully differential 60 GHz four stages low-noise amplifier for wireless applications. The amplifier has been optimized for low-noise, high-gain, and low-power consumption, and implemented in a 90 nm low-power CMOS technology. Matching and common-mode rejection networks have been realized using shielded coplanar transmission lines. The amplifier achieves a peak small-signal gain of 21.3 dB and an average noise figure of 5.4 dB along with power consumption of 30 mW and occupying only 0.38 mm2pads included. The detailed design procedure and the achieved measurement results are presented in this work.


2015 ◽  
Vol 36 (4) ◽  
pp. 045005 ◽  
Author(s):  
Najam Muhammad Amin ◽  
Zhigong Wang ◽  
Zhiqun Li ◽  
Qin Li ◽  
Yang Liu

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7070
Author(s):  
Eduil Nascimento Junior ◽  
Guilherme Theis ◽  
Edson Leonardo dos Santos ◽  
André Augusto Mariano ◽  
Glauber Brante ◽  
...  

Energy-efficiency is crucial for modern radio-frequency (RF) receivers dedicated to Internet of Things applications. Energy-efficiency enhancements could be achieved by lowering the power consumption of integrated circuits, using antenna diversity or even with an association of both strategies. This paper compares two wideband RF front-end architectures, based on conventional low-noise amplifiers (LNA) and low-noise transconductance amplifiers (LNTA) with N-path filters, operating with three transmission schemes: single antenna, antenna selection and singular value decomposition beamforming. Our results show that the energy-efficiency behavior varies depending on the required communication link conditions, distance between nodes and metrics from the front-end receivers. For short-range scenarios, LNA presents the best performance in terms of energy-efficiency mainly due to its very low power consumption. With the increasing of the communication distance, the very low noise figure provided by N-path LNTA-based architectures outperforms the power consumption issue, yielding higher energy-efficiency for all transmission schemes. In addition, the selected front-end architecture depends on the number of active antennas at the receiver. Hence, we can observe that low noise figure is more important with a few active antennas at the receiver, while low power consumption becomes more important when the number of active RF chains at the receiver increases.


2017 ◽  
Vol 27 (03) ◽  
pp. 1850047
Author(s):  
Xin Zhang ◽  
Chunhua Wang ◽  
Yichuang Sun ◽  
Haijun Peng

This paper presents a high linearity and low power Low-Noise Amplifier (LNA) for Ultra-Wideband (UWB) receivers based on CHRT 0.18[Formula: see text][Formula: see text]m Complementary Metal-Oxide-Semiconductor (CMOS) technology. In this work, the folded topology is adopted in order to reduce the supply voltage and power consumption. Moreover, a band-pass LC filter is embedded in the folded-cascode circuit to extend bandwidth. The transconductance nonlinearity has a great impact on the whole LNA linearity performance under a low supply voltage. A post-distortion (PD) technique employing an auxiliary transistor is applied in the transconductance stage to improve the linearity. The post-layout simulation results indicate that the proposed LNA achieves a maximum power gain of 12.8[Formula: see text]dB. The input and output reflection coefficients both are lower than [Formula: see text][Formula: see text]dB over 2.5–11.5[Formula: see text]GHz. The input third-order intercept point (IIP3) is 5.6[Formula: see text]dBm at 8[Formula: see text]GHz and the noise figure (NF) is lower than 4.0[Formula: see text]dB. The LNA consumes 5.4[Formula: see text]mW power under a 1[Formula: see text]V supply voltage.


2017 ◽  
Vol 26 (05) ◽  
pp. 1750075 ◽  
Author(s):  
Najam Muhammad Amin ◽  
Lianfeng Shen ◽  
Zhi-Gong Wang ◽  
Muhammad Ovais Akhter ◽  
Muhammad Tariq Afridi

This paper presents the design of a 60[Formula: see text]GHz-band LNA intended for the 63.72–65.88[Formula: see text]GHz frequency range (channel-4 of the 60[Formula: see text]GHz band). The LNA is designed in a 65-nm CMOS technology and the design methodology is based on a constant-current-density biasing scheme. Prior to designing the LNA, a detailed investigation into the transistor and passives performances at millimeter-wave (MMW) frequencies is carried out. It is shown that biasing the transistors for an optimum noise figure performance does not degrade their power gain significantly. Furthermore, three potential inductive transmission line candidates, based on coplanar waveguide (CPW) and microstrip line (MSL) structures, have been considered to realize the MMW interconnects. Electromagnetic (EM) simulations have been performed to design and compare the performances of these inductive lines. It is shown that the inductive quality factor of a CPW-based inductive transmission line ([Formula: see text] is more than 3.4 times higher than its MSL counterpart @ 65[Formula: see text]GHz. A CPW structure, with an optimized ground-equalizing metal strip density to achieve the highest inductive quality factor, is therefore a preferred choice for the design of MMW interconnects, compared to an MSL. The LNA achieves a measured forward gain of [Formula: see text][Formula: see text]dB with good input and output impedance matching of better than [Formula: see text][Formula: see text]dB in the desired frequency range. Covering a chip area of 1256[Formula: see text][Formula: see text]m[Formula: see text]m including the pads, the LNA dissipates a power of only 16.2[Formula: see text]mW.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 448
Author(s):  
S Manjula ◽  
M Malleshwari ◽  
M Suganthy

This paper presents a low power Low Noise Amplifier (LNA) using 0.18µm CMOS technology for ultra wide band (UWB) applications. gm boosting common gate (CG) LNA is designed to improve the noise performance.  For the reduction of on chip area, active inductor is employed at the input side of the designed LNA for input impedance matching. The proposed UWB LNA is designed using Advanced Design System (ADS) at UWB frequency of 3.1-10.6 GHz. Simulation results show that the gain of 10.74+ 0.01 dB, noise figure is 4.855 dB, input return loss <-13 dB and 12.5 mW power consumption.  


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6456
Author(s):  
Fernando Cardes ◽  
Nikhita Baladari ◽  
Jihyun Lee ◽  
Andreas Hierlemann

This article reports on a compact and low-power CMOS readout circuit for bioelectrical signals based on a second-order delta-sigma modulator. The converter uses a voltage-controlled, oscillator-based quantizer, achieving second-order noise shaping with a single opamp-less integrator and minimal analog circuitry. A prototype has been implemented using 0.18 μm CMOS technology and includes two different variants of the same modulator topology. The main modulator has been optimized for low-noise, neural-action-potential detection in the 300 Hz–6 kHz band, with an input-referred noise of 5.0 μVrms, and occupies an area of 0.0045 mm2. An alternative configuration features a larger input stage to reduce low-frequency noise, achieving 8.7 μVrms in the 1 Hz–10 kHz band, and occupies an area of 0.006 mm2. The modulator is powered at 1.8 V with an estimated power consumption of 3.5 μW.


Frequenz ◽  
2020 ◽  
Vol 74 (3-4) ◽  
pp. 137-144 ◽  
Author(s):  
Dheeraj Kalra ◽  
Manish Kumar ◽  
Aasheesh Shukla ◽  
Laxman Singh ◽  
Zainul Abdin Jaffery

AbstractThis paper includes a design analysis of an inductorless low-power (LP) low-noise amplifier (LNA) with active load for Ultra Wide Band (UWB) applications. The proposed LNA consists of two parallel paths, one is the common source (CS) path and second is the CG path. The CG path has the edge advantage of improving overall Noise figure (NF) due to wide band impedance matching in UWB, while the CS path provides high power gain. A method for noise cancellation is adopted, to reduce the noise of CS path with the help of CG path. The proposed LNA successfully simulated in 90 nm CMOS technology. The results of proposed work indicate optimization at frequency 5.70 GHz with 3 dB bandwidth of 4.3 GHz–8.9 GHz. All simulations have been done for a range of frequency 03 GHz–13 GHz in Cadence virtuoso software. The results quoted 1.15 dB NF, −18.12 dB S11, 13.7 dB S21, maximum operating power gain (GP) 11.756 dB at frequency 5.7 GHz and available power gain (GA) is 10.17 dB at frequency 8.61 GHz, with 0.6 V, 0.92 mW broad band LNA.


Author(s):  
Tran Van Hoi ◽  
Ngo Thi Lanh ◽  
Nguyen Xuan Truong ◽  
Nguyen Huu Duc ◽  
Bach Gia Duong

<p>This paper focuses on the design and implementation of a front-end for a Vinasat satellite receiver with auto-searching mechanism and auto-tracking satellite. The front-end consists of a C-band low-noise block down-converter and a L-band receiver. The receiver is designed to meet the requirements about wide-band, high sensitivity, large dynamic range, low noise figure. To reduce noise figure and increase bandwidth, the C-band low-noise amplifier is designed using T-type of matching network with negative feedback and the L-band LNA is designed using cascoded techniques. The local oscillator uses a voltage controlled oscillator combine phase locked loop to reduce the phase noise and select channels. The front-end has successfully been designed and fabricated with parameters: Input frequency is C-band; sensitivity is greater than -130 dBm for C-band receiver and is greater than -110dBm for L-band receiver; output signals are AM/FM demodulation, I/Q demodulation, baseband signals.</p>


2014 ◽  
Vol 67 (1) ◽  
Author(s):  
Wong How Hwan ◽  
Vinny Lam Siu Fan ◽  
Yusmeeraz Yusof

The purpose of this research is to design a low power integrated complementary metal oxide semiconductor (CMOS) detection circuit for charge-modulated field-effect transistor (CMFET) and it is used for the detection of deoxyribonucleic acid (DNA) hybridization. With the available CMOS technology, it allows the realization of complete systems which integrate the sensing units and transducing elements in the same device. Point-of-care (POC) testing device is a device that allows anyone to operate anywhere and obtain immediate results. One of the important features of POC device is low power consumption because it is normally battery-operated. The power consumption of the proposed integrated CMOS detection circuit requires only 14.87 mW. The detection circuit will amplify the electrical signal that comes from the CMFET to a specified level in order to improve the recording characteristics of the biosensor. Self-cascode topology was used in the drain follower circuit in order to reduce the channel length modulation effect. The proposed detection circuit was designed with 0.18µm Silterra CMOS fabrication process and simulated under Cadence Simulation Tool. 


Sign in / Sign up

Export Citation Format

Share Document