scholarly journals Bio-inspired Parametric Design for Adaptive Stadium Façades

Author(s):  
Jong Jin Park ◽  
Bharat Dave

The challenge of developing sustainable, adaptive architecture requires unconventional approaches to innovative knowledge about composition and dynamic interaction between building façades and environmental conditions. These approaches are often inspired by biology, its complex fine-tuned behaviour and integration of living systems. This paper proposes a system inspired from the optics of reflecting superposition compound eyes to create responsive façade structures that capture and distribute daylight within a building in response to the movement of the sun. This is investigated using the parametric reshaping of a building envelop as part of solar radiation and target ray simulations. The prototype façade system is capable of adapting to different functional needs, locations, times of the day, and other contextual conditions.Keywords: Biomimetics, kinetic/adaptive façades, reflecting superposition compound eyes

Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lisa Spiecker ◽  
Bo Leberecht ◽  
Corinna Langebrake ◽  
Malien Laurien ◽  
Shambhavi Rajendra Apte ◽  
...  

Abstract Every year, billions of animals leave their home range and start seasonal migrations in order to find more favorable resources and to escape harsh environmental conditions. These round trips often span thousands of kilometers. To successfully navigate along their route, animals rely on various external references. While landmarks and celestial cues like stars or the sun are easy to imagine as guidance on these journeys, using the geomagnetic field for orientation is more elusive. The geomagnetic field is an omnipresent cue, which can be sensed and relied upon by many animals, even when visual cues are sparse. How magnetic fields can be perceived seems to vary between birds and fish. While birds seem to use a mechanism based on the quantum mechanical properties of electron spins, fish may have evolved a compass similar in its function to the technical devises developed by humans. How these mechanisms work precisely and how they are integrated are research questions addressed in SFB 1372.


1971 ◽  
Vol 12 ◽  
pp. 413-421 ◽  
Author(s):  
B.G. Marsden

There has long been speculation as to whether comets evolve into asteroidal objects. On the one hand, in the original version of the Oort (1950) hypothesis, the cometary cloud was supposed to have formed initially from the same material that produced the minor planets; and an obvious corollary was that the main physical difference between comets and minor planets would be that the latter had long since lost their icy surfaces on account of persistent exposure to strong solar radiation (Öpik, 1963). However, following a suggestion by Kuiper (1951), it is now quite widely believed that, whereas the terrestrial planets and minor planets condensed in the inner regions of the primordial solar nebula, icy objects such as comets would have formed more naturally in the outer parts, perhaps even beyond the orbit of Neptune (Cameron, 1962; Whipple, 1964a). Furthermore, recent studies of the evolution of the short-period comets indicate that it is not possible to produce the observed orbital distribution from the Oort cloud, even when multiple encounters with Jupiter are considered (Havnes, 1970). We must now seriously entertain the possibility that most of the short-period orbits evolved directly from low-inclination, low-eccentricity orbits with perihelia initially in the region between, say, the orbits of Saturn and Neptune, and that these comets have never been in the traditional cloud at great distances from the Sun.


1888 ◽  
Vol 14 ◽  
pp. 118-121
Author(s):  
John Aitken

In the many theories that have been advanced to explain the comparative constancy of solar radiation in long past ages as evidenced by geological history, it has been generally assumed that the temperature of the sun has not varied much, and to account for its not falling in temperature a number of theories have been advanced, all suggesting different sources from which it may have received the energy which it radiates as heat. Since the chemical theory was shown to be insufficient to account for the vast amount of heat radiated, other theories, such as the meteoric theory and the conservation of energy theory, have been advanced.


2004 ◽  
Vol 63 (4) ◽  
pp. 574-581 ◽  
Author(s):  
George E. Davis ◽  
Walter E. Lowell

2018 ◽  
Vol 240 ◽  
pp. 04004 ◽  
Author(s):  
Marek Jaszczur ◽  
Qusay Hassan ◽  
Janusz Teneta ◽  
Ewelina Majewska ◽  
Marcin Zych

The operating temperature of the photovoltaic module is an important issue because it is directly linked with system efficiency. The objective of this work is to evaluate temperature distribution in the photovoltaic module under different environmental conditions. The results shown that photovoltaic module operating temperature depends not only on the ambient temperature or solar radiation dependent but also depends on wind speed and wind direction. It is presented that the mounting conditions which are not taken into consideration by most of the literature models also play a significant role in heat transfer. Depends on mounting type an increase in module operating temperature in the range 10-15oC was observed which cause further PV system efficiency decrease of about 3.8-6.5 %.


2021 ◽  
Vol 57 (2) ◽  
pp. 279-295
Author(s):  
L. O. Marchi ◽  
D. M. Sanchez ◽  
F. C. F. Venditti ◽  
A. F. B. A. Prado ◽  
A. K. Misra

In this work, we study the effects of solar radiation pressure (SRP) on the problem of changing the orbit of an asteroid to support planetary defense, scientific research, or exploitation of materials. This alternative considers a tethered reflective balloon (or a set of reflective balloons) attached to the asteroid, with a high area-to-mass ratio, to use the SRP to deflect a potentially hazardous asteroid (PHA) or to approximate the target asteroid to Earth. The tether is assumed to be inextensible and massless, and the motion is described only in the orbital plane of the asteroid around the Sun. The model is then used to study the effects that the tether length, the reflectivity coefficient, and the area-to-mass ratio have on the deviation of the trajectory of the asteroid.


Concentrating Solar Power (CSP) focuses sunlight in order to use the heat energy of the sun. In a central receiver system configuration, many mirrors (heliostats) individually track the sun and reflect the concentrated solar energy onto a receiver on top of a tower. The receiver contains the working fluid which is heated by the concentrated solar radiation. The useful energy that absorbed by the water flows through the receiver in solar tower plant depending on the angle between the solar rays and the position of heliostat in the region of work. Heliostat will reflect the incident solar radiation in the direction of the receiver founded in the top of the tower, in order to get a maximum incident solar radiation on the heliostat reflection area. Because of the cosine factor loss effect due to the sun position is variable along the day from sunrise to sunset, which must be in a minimum value, therefore an automated tracking system with dual axes as a control system with sensors had been built and used to stay the sunrays incident on the receiver, and enable the heliostat to flow the sun where it was


Solar Energy ◽  
1988 ◽  
Vol 41 (4) ◽  
pp. 371-377 ◽  
Author(s):  
P. Ineichen ◽  
A. Zelenka ◽  
O. Guisan ◽  
A. Razafindraibe
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document