scholarly journals Design and Implementation of 2.5kW IBFB-LLC DC/ DC Converter Using SiC Mosfet

Interleaved Boost Full Bridge integrated LLC resonant (IBFB- LLC) is an isolated DC/DC converter with directional power flow, which can cope with a wide input voltage range of PV applications. The main losses of the converter are switching losses of the power switches and transformers losses. This paper proposes a method to improve the efficiency of the IBFB converter due to zero voltage switching technique, in combination with employing new SiC MOSFET technology instead of the conventional Si MOSFET. In addition, Litz wire is also adopted to reduce the losses on the high frequency isolation transformer. Both numerical simulations and experiments with a prototype 2.5kW converter are implemented to verify the feasibility and effectiveness of the proposed solution.

2013 ◽  
Vol 64 (5) ◽  
pp. 331-333
Author(s):  
Hyun-Lark Do

Abstract This paper presents a zero-voltage-switching (ZVS) full-bridge based DC-DC converter with linear voltage gain according to duty cycle. The proposed converter is based on an asymmetrical pulse-width-modulation (APWM) full-bridge converter which has various advantages over other converters. However, it has some drawbacks such as limited maximum duty cycle to 0.5 and narrow input range. The proposed converter overcomes these problems. The duty cycle is not limited and input voltage range is wide. Also, the ZVS operation of all power switches is achieved. Therefore, switching losses are significantly reduced and high-efficiency is obtained. Steady-state analysis and experimental results for the proposed converter are presented to validate the feasibility and the performance of the proposed converter.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1931
Author(s):  
Bor-Ren Lin ◽  
Yen-Chun Liu

A new circuit structure of LLC converter is studied and implemented to achieve wide zero-voltage switching range and wide voltage operation such as consumer power units without power factor correction and long hold up time demand, battery chargers, photovoltaic converters and renewable power electronic converters. The dc converter with the different secondary winding turns is adopted and investigated to achieve the wide input voltage operation (50–400 V). To meet wide voltage operation, the full bridge and half bridge dc/dc converters with different secondary turns can be selected in the presented circuit to have three different voltage gains. According to input voltage range, the variable frequency scheme is employed to have the variable voltage gain to overcome the wide input voltage operation. Therefore, the wide soft switching load variation and wide voltage operation range are achieved in the presented resonant circuit. The prototype circuit is built and tested and the experiments are demonstrated to investigate the circuit performance.


This manuscript presents a novel high gain, high efficiency Soft-switching high step-up DC/DC converter for battery-operated vehicles. The high step-up converter can transfer the power flow from the small voltage to high voltage. The conventional two input inductor hard switched non-isolated DC-DC converter improved with an additional auxiliary cell to attain the Zero voltage switching, due to obtaining the softswitching the efficiency may improve and reduces the stress across the main switches. The isolated converters are used as a transformer to attain high gain, whereas in the proposed converter obtains the high gain without a transformer and contains the high efficiency in the step-up mode of operation. The main aim of the converter is to attain the Zero voltage switching without using any additional auxiliary switches. In this paper, the input voltage applied as 30V, and the obtained output voltage is fifteen times to the applied voltage, which is 450V and the output power 850W. This paper mainly presents the theoretical analysis of converter operation and the evaluation of the simulation results validated with the theoretical analysis.


Electronics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 47 ◽  
Author(s):  
Bor-Ren Lin

A soft switching three-level pulse-width modulation (PWM) converter is presented for industrial electronics with wide voltage range operation, such as solar power or fuel cell applications. Phase shift PWM scheme is used on the input-side to accomplish the zero voltage turn-on on power switches and improve the converter efficiency. Three-level diode-clamp circuit topology is adopted in the presented circuit to lessen the voltage ratings on active devices for high voltage applications. Three sub-circuits with the different turns-ratio of transformers can be selected in the presented converter in order to achieve 10:1 (Vin,max = 10Vin,min) wide input voltage operation when compared to the conventional multilevel converter. The proposed circuit is a single-stage converter instead of two-stage converter to realize wide voltage operation. Therefore, the presented converter has less component counts. Finally, the design procedure and experiments with a 300W laboratory circuit are presented and discussed to confirm the circuit analysis and converter performance.


2015 ◽  
Vol 785 ◽  
pp. 101-105
Author(s):  
Adrian Soon Theam Tan ◽  
Shahid Iqbal

Photovoltaic power conditioning system (PVPCS) requires a high efficiency dc-dc converterstage capable of wide input voltage regulation and have the ease of maximum power point implementation for both stand alone photovoltaic system and grid-connected system. Galvanic isolation at the dc-dc stage can replace the isolation needed in the inverter stage and thus reduce the sizeof isolation transformer and increases overall system efficiency. This paper presents detailed analysis,design and implementation of a LLC resonant converter for photovoltaic battery charging application.The LLC resonant converter operate with zero voltage switching (ZVS) turn on and low current turnoff thus reducing switching losses. The experimental results are given to validate the operation andperformance of the converter.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sana Basharat ◽  
Saeed Ehsan Awan ◽  
Rizwan Akhtar ◽  
Alamdar Hussain ◽  
Shahid Iqbal ◽  
...  

DC–DC converters have wide applications in industries, motor drive circuits, electric vehicles, and power supplies. In traditional converters hard switching occurs due to switching losses. This imposes constraints on the converter’s efficiency which results in heat dissipation and reduction in the converter’s life. The proposed converter aims to encounter the hard switching problem with the provision of soft switching features. The presented topology is efficient with respect to the features of cost, compact size and durable lifetime of converter topology with the provision of low switching stresses. This research work proposes a novel stepdown converter with zero voltage switching characteristics. With the use of half bridge inverter switches and series resonant components in the auxiliary circuit, the target of zero voltage switching and reduction in switching stresses has been achieved. The proposed 500 W converter is designed to operate at frequency of 100 KHz with 300 V source input voltage. Output voltage of the converter is 150 V.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 580
Author(s):  
Bor-Ren Lin ◽  
Yi-Hao Peng

This paper studies and implements a power converter to have less current ripple output and wide voltage input operation. A three-leg converter with different primary turns is presented on its high-voltage side to extend the input voltage range. The current doubler rectification circuit is adopted on the output side to have low current ripple capability. From the switching states of the three-leg converter, the presented circuit has two equivalent sub-circuits under different input voltage ranges (Vin = 120–270 V or 270–600 V). The general phase-shift pulse-width modulation is employed to control the presented converter so that power devices can be turned on at zero voltage in order to reduce switching loss. Compared to two-stage circuit topologies with a wide voltage input operation, the presented converter has the benefits of simple circuit structure, easy control algorithm using a general integrated circuit or digital controller, and less components. The performance of the presented circuit is confirmed and validated by an 800 W laboratory prototype.


Author(s):  
Mohamed Salem ◽  
Awang Jusoh ◽  
N.Rumzi N. Idris ◽  
Tole Sutikno ◽  
Iftikhar Abid

This paper presents a study on a new full bridge series resonant converter (SRC) with wide zero voltage switching (ZVS) range, and higher output voltage. The high frequency transformer is connected in series with the LC series resonant tank. The tank inductance is therefore increased; all switches having the ability to turn on at ZVS, with lower switching frequency than the LC tank resonant frequency. Moreover, the step-up high frequency (HF) transformer design steps are introduced in order to increase the output voltage to overcome the gain limitation of the conventional SRC. Compared to the conventional SRC, the proposed converter has higher energy conversion, able to increase the ZVS range by 36%, and provide much higher output power. Finally, the a laboratory prototypes of the both converters with the same resonant tank parameters and input voltage are examined based on 1 and 2.2 kW power respectively, for veryfing  the reliability of the performance and the operation principles of both converters.


2018 ◽  
Vol 33 (12) ◽  
pp. 10449-10466 ◽  
Author(s):  
Dong Liu ◽  
Yanbo Wang ◽  
Fujin Deng ◽  
Qi Zhang ◽  
Zhe Chen

Sign in / Sign up

Export Citation Format

Share Document