scholarly journals Insect community dynamics in relation to climate change in Mongolia

2016 ◽  
Vol 39 (1) ◽  
pp. 111-118 ◽  
Author(s):  
Badamnyambuu Iderzorig ◽  
Khureltsetseg Lkhagvadorj ◽  
Ohseok Kwon
Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 427
Author(s):  
Tianyang Zhou ◽  
Jiaxin Zhang ◽  
Yunzhi Qin ◽  
Mingxi Jiang ◽  
Xiujuan Qiao

From supporting wood production to mitigating climate change, forest ecosystem services are crucial to the well-being of humans. Understanding the mechanisms that drive forest dynamics can help us infer how to maintain forest ecosystem services and how to improve predictions of forest dynamics under climate change. Despite the growing number of studies exploring above ground biomass (AGB) dynamics, questions of dynamics in biodiversity and in number of individuals still remain unclear. Here, we first explored the patterns of community dynamics in different aspects (i.e., AGB, density and biodiversity) based on short-term (five years) data from a 25-ha permanent plot in a subtropical forest in central China. Second, we examined the relationships between community dynamics and biodiversity and functional traits. Third, we identified the key factors affecting different aspects of community dynamics and quantified their relative contributions. We found that in the short term (five years), net above ground biomass change (ΔAGB) and biodiversity increased, while the number of individuals decreased. Resource-conservation traits enhanced the ΔAGB and reduced the loss in individuals, while the resource-acquisition traits had the opposite effect. Furthermore, the community structure contributed the most to ΔAGB; topographic variables and soil nutrients contributed the most to the number of individuals; demographic process contributed the most to biodiversity. Our results indicate that biotic factors mostly affected the community dynamics of ΔAGB and biodiversity, while the number of individuals was mainly shaped by abiotic factors. Our work highlighted that the factors influencing different aspects of community dynamics vary. Therefore, forest management practices should be formulated according to a specific protective purpose.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Åkesson ◽  
Alva Curtsdotter ◽  
Anna Eklöf ◽  
Bo Ebenman ◽  
Jon Norberg ◽  
...  

AbstractEco-evolutionary dynamics are essential in shaping the biological response of communities to ongoing climate change. Here we develop a spatially explicit eco-evolutionary framework which features more detailed species interactions, integrating evolution and dispersal. We include species interactions within and between trophic levels, and additionally, we incorporate the feature that species’ interspecific competition might change due to increasing temperatures and affect the impact of climate change on ecological communities. Our modeling framework captures previously reported ecological responses to climate change, and also reveals two key results. First, interactions between trophic levels as well as temperature-dependent competition within a trophic level mitigate the negative impact of climate change on biodiversity, emphasizing the importance of understanding biotic interactions in shaping climate change impact. Second, our trait-based perspective reveals a strong positive relationship between the within-community variation in preferred temperatures and the capacity to respond to climate change. Temperature-dependent competition consistently results both in higher trait variation and more responsive communities to altered climatic conditions. Our study demonstrates the importance of species interactions in an eco-evolutionary setting, further expanding our knowledge of the interplay between ecological and evolutionary processes.


Author(s):  
Natalia Pirimova ◽  
Alison Parker ◽  
Lesley Campbell

Abiotic environmental variation can have dramatic effects on plant floral morphology and nectar or pollen rewards. In response, pollinators may change their foraging behavior and distribution and if pollinators change their foraging behavior or distribution, this could have dramatic effects on the reproductive success of plant populations. To start tackling this problem, we measured the response of floral morphology (corolla diameter, stamen length, and ovule number) of Raphanus raphanistrum to experimental manipulations of field soil moisture. As soil moisture increased, corolla diameter and anther length grew. We expect these changes to provide more visitation rewards for insects in moist conditions. Therefore, water availability influences growth and development of flowers, and may have dramatic effects on insect community dynamics. KEYWORDS: Floral Rewards, Climate, Rain-out Shelters, Flower Morphology, Raphanus raphanistrum, Brassicaceae


2020 ◽  
Vol 117 (37) ◽  
pp. 22858-22865 ◽  
Author(s):  
Vigdis Vandvik ◽  
Olav Skarpaas ◽  
Kari Klanderud ◽  
Richard J. Telford ◽  
Aud H. Halbritter ◽  
...  

Generality in understanding biodiversity responses to climate change has been hampered by substantial variation in the rates and even directions of response to a given change in climate. We propose that such context dependencies can be clarified by rescaling climate gradients in terms of the underlying biological processes, with biotic interactions as a particularly important process. We tested this rescaling approach in a replicated field experiment where entire montane grassland communities were transplanted in the direction of expected temperature and/or precipitation change. In line with earlier work, we found considerable variation across sites in community dynamics in response to climate change. However, these complex context dependencies could be substantially reduced or eliminated by rescaling climate drivers in terms of proxies of plant−plant interactions. Specifically, bryophytes limited colonization by new species into local communities, whereas the cover of those colonists, along with bryophytes, were the primary drivers of local extinctions. These specific interactions are relatively understudied, suggesting important directions for future work in similar systems. More generally, the success of our approach in explaining and simplifying landscape-level variation in climate change responses suggests that developing and testing proxies for relevant underlying processes could be a fruitful direction for building more general models of biodiversity response to climate change.


2009 ◽  
Vol 30 (2) ◽  
pp. 78
Author(s):  
Nicole S Webster ◽  
David G Bourne ◽  
Linda L Blackall

Microbes constitute the largest diversity and biomass of all marine organisms, yet they are often ignored during discussions about the impacts of environmental change. This is despite the fact that, of all the organisms on the planet, it is the microbes that will play the largest fundamental role in either mitigating or exacerbating the effects of global climate change. Microbes will also be the first and fastest to shift their metabolic capabilities, host range, function and community dynamics as a result of climate change. Therefore, an understanding of microbial community composition and function in individual niche habitats is vital.


2010 ◽  
Vol 278 (1715) ◽  
pp. 2191-2197 ◽  
Author(s):  
Brian D. Todd ◽  
David E. Scott ◽  
Joseph H. K. Pechmann ◽  
J. Whitfield Gibbons

Climate change has had a significant impact globally on the timing of ecological events such as reproduction and migration in many species. Here, we examined the phenology of reproductive migrations in 10 amphibian species at a wetland in South Carolina, USA using a 30 year dataset. We show for the first time that two autumn-breeding amphibians are breeding increasingly later in recent years, coincident with an estimated 1.2°C increase in local overnight air temperatures during the September through February pre-breeding and breeding periods. Additionally, two winter-breeding species in the same community are breeding increasingly earlier. Four of the 10 species studied have shifted their reproductive timing an estimated 15.3 to 76.4 days in the past 30 years. This has resulted in rates of phenological change that range from 5.9 to 37.2 days per decade, providing examples of some of the greatest rates of changing phenology in ecological events reported to date. Owing to the opposing direction of the shifts in reproductive timing, our results suggest an alteration in the degree of temporal niche overlap experienced by amphibian larvae in this community. Reproductive timing can drive community dynamics in larval amphibians and our results identify an important pathway by which climate change may affect amphibian communities.


2017 ◽  
Vol 3 (2) ◽  
pp. 320-333 ◽  
Author(s):  
Qian Gu ◽  
Tara J. Zamin ◽  
Paul Grogan

Climate change is having profound influences on Arctic tundra plant composition, community dynamics, and ecosystem processes. Stoichiometric homeostasis (H), the degree to which a plant maintains its internal nutrient concentrations independent of nutrient variations in its environment, may be a useful approach to predict the impacts of these influences. In this case study, we used fertilization manipulation data to calculate homeostasis indices based on nitrogen (HN), phosphorus (HP), and nitrogen to phosphorus ratios (HN:P) of aboveground tissues for seven common tundra vascular species belonging to three growth forms. We then analyzed species H relationships with dominance, spatial stability, and responsiveness to various experimental manipulations. Each of the H indices was correlated amongst tissue types within each species and was generally highest in ericoid mycorrhizal host species and lowest in the ectomycorrhizal birch. Species HP and HN:P were consistently positively correlated with aboveground biomass within the controls and across all manipulations. Furthermore, these same species were spatially stable across experimentally warmed field plots. Stoichiometric homeostasis theory has been successful in predicting grassland community dynamics. This first test of its applicability across a variety of Arctic plant growth forms highlights its considerable potential in predicting tundra plant community structure and responses to environmental change.


2020 ◽  
pp. 243-262
Author(s):  
David A. Vasseur

Of the myriad of environmental variables that are currently in flux due to anthropogenic climate change, temperature is one of the most ubiquitous and well-studied. Temperature directly influences the vital rates and ecological thresholds that determine how quickly populations grow or decline and many studies have sought to determine how these influences culminate at the population and community level. This chapter surveys the theoretical work in this area and details how our growing understanding of the relationships between temperature and vital rates and thresholds has led to new insights and challenges. The latter sections of the chapter reveal a key principle to guide the ongoing debate about the temperature-dependence of a key parameter underlying nearly all population and community models: the carrying capacity. From this, a simple model is used to demonstrate how linkages between the thermal sensitivity of population growth and carrying capacity determine dynamics and the propensity for extinction in warming environments.


Sign in / Sign up

Export Citation Format

Share Document