scholarly journals Changes in Cytokine Gene Expression Levels in Mesenchymal Stromal Cells and Macrophages During Their Joint Cultivation

2019 ◽  
pp. 102-107
Author(s):  
A. N. Kondrachuk ◽  
E. A. Nadyrov ◽  
A. Y. Kozlov ◽  
M. V. Matveyenkov ◽  
A. S. Shaforost ◽  
...  
Author(s):  
T. R. Kannaki ◽  
P. C. Verma ◽  
M. R. Reddy ◽  
M. Shanmugam

TLR repertoire of duck, profiling of their mRNA expression in a range of duckling tissues and cytokine gene expressions upon TLR agonists stimulation in in vitro assay have been investigated. All ten TLR genes orthologous to chicken TLR repertoire were found in duck. Duck TLR genes showed 77-83% similarity at amino acid level to their chicken counterparts. All ten TLRs-TLR1LA, 1LB, 2A, 2B, 3, 4, 5, 7, 15 and 21 mRNA expressions were significantly higher in bursa than other tissues studied, whereas in muscle all TLRs mRNA expressions were significantly lower except for TLR15 (P>0.01). TLR7 gene expression was significantly higher in spleen, bursa and also in lung tissues (P>0.01). The cytokine gene expression levels in duck PBMCs upon LPS and poly I:C stimulation have been quantified. IL-1g gene expression level in LPS stimulated duck PBMC culture was significantly higher at both 12 h and 24 h time intervals (P>0.05). However, there were no significant changes in IFN-ã gene expression levels in poly I:C stimulated duck PBMC culture at both the intervals. TLR gene expression in young ducklings together with cytokine response upon LPS stimulation demonstrates the innate preparedness of younger birds to encounter pathogens and their functional ability to respond to their ligands.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11806
Author(s):  
John M. Ngunjiri ◽  
Kara J.M. Taylor ◽  
Hana Ji ◽  
Michael C. Abundo ◽  
Amir Ghorbani ◽  
...  

Turkey respiratory and gut microbiota play important roles in promoting health and production performance. Loss of microbiota homeostasis due to pathogen infection can worsen the disease or predispose the bird to infection by other pathogens. While turkeys are highly susceptible to influenza viruses of different origins, the impact of influenza virus infection on turkey gut and respiratory microbiota has not been demonstrated. In this study, we investigated the relationships between low pathogenicity avian influenza (LPAI) virus replication, cytokine gene expression, and respiratory and gut microbiota disruption in specific-pathogen-free turkeys. Differential replication of two LPAI H5N2 viruses paralleled the levels of clinical signs and cytokine gene expression. During active virus shedding, there was significant increase of ileal and nasal bacterial contents, which inversely corresponded with bacterial species diversity. Spearman’s correlation tests between bacterial abundance and local viral titers revealed that LPAI virus-induced dysbiosis was strongest in the nasal cavity followed by trachea, and weakest in the gut. Significant correlations were also observed between cytokine gene expression levels and relative abundances of several bacteria in tracheas of infected turkeys. For example, interferon γ/λ and interleukin-6 gene expression levels were correlated positively with Staphylococcus and Pseudomonas abundances, and negatively with Lactobacillus abundance. Overall, our data suggest a potential relationship where bacterial community diversity and enrichment or depletion of several bacterial genera in the gut and respiratory tract are dependent on the level of LPAI virus replication. Further work is needed to establish whether respiratory and enteric dysbiosis in LPAI virus-infected turkeys is a result of host immunological responses or other causes such as changes in nutritional uptake.


2021 ◽  
Vol 9 (8) ◽  
pp. 1618
Author(s):  
Valter Almeida ◽  
Isadora Lima ◽  
Deborah Fraga ◽  
Eugenia Carrillo ◽  
Javier Moreno ◽  
...  

Visceral leishmaniasis is associated with a variety of hematological abnormalities. In this study, we correlated the hematological changes in the peripheral blood of dogs naturally infected with Leishmania infantum (L. infantum) with the distribution of cell lineages and cytokine gene expression patterns in the bone marrow. Samples from 63 naturally semidomiciled dogs living in an endemic area of visceral leishmaniasis were analyzed. L. infantum infection was detected in 50 dogs (79.3%). Among those, 18 (32%) had positive splenic cultures and showed more clinical signs. They also had lower red blood cell counts and leukocytosis with an increased number of neutrophils and monocytes in peripheral blood compared to dogs negative to this test. L. infantum DNA was detected in the bone marrow of 8/14 dogs with positive splenic culture. Dogs with L. infantum infection in the bone marrow presented with histiocytosis (p = 0.0046), fewer erythroid cell clusters (p = 0.0127) and increased gene expression levels of IFN-γ (p = 0.0015) and TNF (p = 0.0091). The data shown herein suggest that inflammatory and cytokine gene expression changes in bone marrow may contribute to the peripheral blood hematological changes observed in visceral leishmaniasis.


2005 ◽  
Vol 79 (19) ◽  
pp. 12164-12172 ◽  
Author(s):  
Kristina Abel ◽  
David M. Rocke ◽  
Barinderpal Chohan ◽  
Linda Fritts ◽  
Christopher J. Miller

ABSTRACT The current knowledge about early innate immune responses at mucosal sites of human immunodeficiency virus (HIV) entry is limited but likely to be important in the design of effective HIV vaccines against heterosexual transmission. This study examined the temporal and anatomic relationship between virus replication, lymphocyte depletion, and cytokine gene expression levels in mucosal and lymphoid tissues in a vaginal-transmission model of HIV in rhesus macaques. The results of the study show that the kinetics of cytokine gene expression levels in the acute phase of infection are positively correlated with virus replication in a tissue. Thus, cytokine responses after vaginal simian immunodeficiency virus (SIV) inoculation are earliest and strongest in mucosal tissues of the genital tract and lowest in systemic lymphoid tissues. Importantly, the early cytokine response was dominated by the induction of proinflammatory cytokines, while the induction of cytokines with antiviral activity, alpha/beta interferon, occurred too late to prevent virus replication and dissemination. Thus, the early cytokine response favors immune activation, resulting in the recruitment of potential target cells for SIV. Further, unique cytokine gene expression patterns were observed in distinct anatomic locations with a rapid and persistent inflammatory response in the gut that is consistent with the gut being the major site of early CD4 T-cell depletion in SIV infection.


Reproduction ◽  
2017 ◽  
Vol 154 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Kadri Rekker ◽  
Merli Saare ◽  
Elo Eriste ◽  
Tõnis Tasa ◽  
Viktorija Kukuškina ◽  
...  

The aetiology of endometriosis is still unclear and to find mechanisms behind the disease development, it is important to study each cell type from endometrium and ectopic lesions independently. The objective of this study was to uncover complete mRNA profiles in uncultured stromal cells from paired samples of endometriomas and eutopic endometrium. High-throughput mRNA sequencing revealed over 1300 dysregulated genes in stromal cells from ectopic lesions, including several novel genes in the context of endometriosis. Functional annotation analysis of differentially expressed genes highlighted pathways related to cell adhesion, extracellular matrix–receptor interaction and complement and coagulation cascade. Most importantly, we found a simultaneous upregulation of complement system components and inhibitors, indicating major imbalances in complement regulation in ectopic stromal cells. We also performed in vitro experiments to evaluate the effect of endometriosis patients’ peritoneal fluid (PF) on complement system gene expression levels, but no significant impact of PF on C3, CD55 and CFH levels was observed. In conclusion, the use of isolated stromal cells enables to determine gene expression levels without the background interference of other cell types. In the future, a new standard design studying all cell types from endometriotic lesions separately should be applied to reveal novel mechanisms behind endometriosis pathogenesis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0249343
Author(s):  
Abigail Pulsipher ◽  
Justin R. Savage ◽  
Thomas P. Kennedy ◽  
Kavita Gupta ◽  
Benjamin G. Cuiffo ◽  
...  

Purpose Oral mucositis (OM) is a common, painful side effect of radiation therapy used for the treatment of head and neck cancer (HNC). Activation of the innate immune system upon irradiation has been identified as a key precipitating event of OM. To better understand OM’s pathogenesis, we studied pattern recognition receptors (PRRs) and their downstream pro-inflammatory cytokines in a mouse model of radiation-induced OM. We also tested therapeutic efficacy of GM-1111 that targets innate immune system to reduce radiation-induced OM. Methods and materials The pathogenesis of OM was studied in a single X-ray induced mouse model. The severity of OM was measured by visual and microscopical examinations. The irradiation-induced changes of PRRs and their downstream effector cytokine gene expression levels were determined. The efficacy of GM-1111 to reduce OM was tested in single and fractionated irradiation mouse models. The impact of the drug on tumor response to radiation therapy was also tested in a mouse model of human HNC. Results Radiation-induced tissue ulcerations were radiation-dosage and -time dependent. The lesions showed selective increases in PRR and pro-inflammatory cytokine gene expression levels. Once daily administration of GM-1111 (≥30 mg/kg, s.c.) significantly reduced the severity and the incidence of OM. The drug had little effect on PRRs but significantly inhibited downstream pro-inflammatory cytokine genes. GM-1111 did not interfere radiation therapy to induce HNC SCC-25 tumor regression. Instead, we observed significant drug-induced tumor regression. Conclusions Radiation induces tissue damages. The increased expression levels of PRRs and their downstream pro-inflammatory cytokine genes in the damaged tissues suggest their important contribution to the pathogenesis of OM. Drug GM-1111 that targets these innate immune molecules may be a potential drug candidate as an intervention for OM.


Sign in / Sign up

Export Citation Format

Share Document