scholarly journals Spatial distribution of soil organic carbon by digital mapping: the case of the Medio Aguanaval river sub-basin

2021 ◽  
Vol 13 (2) ◽  
pp. 227-245
Author(s):  
Georgina Pérez-Rodríguez ◽  
◽  
Armando López-Santos ◽  
Miguel Agustín Velásquez-Valle ◽  
José Villanueva-Díaz ◽  
...  

ntroduction: Carbon is found mainly in geological reservoirs, oceans, atmosphere and land. Soil organic carbon (SOC) is determined by the quantity and vertical distribution of vegetation, intrinsic soil properties and climate, but variability is influenced by anthropogenic interference. SOC stocks are not static; modeling their spatial, vertical and horizontal distribution involves the creation of baseline estimates to quantify these stocks. Objective: To estimate the magnitude of SOC stocks in the Medio Aguanaval River sub-basin (ScRMA) and to analyze the sensitivity of four interpolation methods to minimize the error of digital mapping for the ScRMA. Methodology: The study consisted of five stages: 1) search, download and analysis of soil data, 2) data processing, 3) selection of verification sites, 4) laboratory analysis and 5) processing of data from verification sites. Results: SOC values ranged from 9 to 133 t·ha-1, with a mean of 36.31 t·ha-1 and standard deviation of 23.83 t·ha-1. The ordinary exponential Kriging interpolator was the best representation for SOC of the ScRMA based onstatistics. The results of the analysis of the verification sites yielded a mean SOC of 24.4 t·ha-1. Limitations of the study: Soil profile density for the region and the lack of information on bulk density. Originality: The baseline distribution of SOC at the sub-basin level was used to analyze its dynamics. Conclusions: The highest concentration of SOC (61 to 129 t·ha-1) was found in the municipalities of Cuencamé and Santa Clara, while the lowest records (10 to 30 t·ha-1) were located in the municipalities of Torreón and Viesca.

Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1023 ◽  
Author(s):  
Shuai Wang ◽  
Qianlai Zhuang ◽  
Zijiao Yang ◽  
Na Yu ◽  
Xinxin Jin

Forest soil organic carbon (SOC) accounts for a large portion of global soil carbon stocks. Accurately mapping forest SOC stocks is a necessity for quantifying forest carbon cycling and forest soil sustainable management. In this study, we used a boosted regression trees (BRT) model to predict the spatial distribution of SOC stocks during two time periods (1990 and 2015) and calculated their spatiotemporal changes during 25 years in Liaoning Province, China. A total of 367 (1990) and 539 (2015) sampling sites and 9 environmental variables (climate, topography, remote sensing) were used in the BRT model. The ten-fold cross-validation technique was used to evaluate the prediction performance and uncertainty of the BRT model in two periods. It was found that the BRT model could account for 65% and 59% of SOC stocks, respectively for the two periods. MAP and NDVI were the main environmental variables controlling the spatial variability of SOC stocks. Over the 25-year period, the average SOC stocks increased from 5.66 to 6.61 kg m−2. In the whole study area, the SOC stocks were the highest in the northeast, followed by the southwest, and the lowest in the middle of the spatial distribution pattern in the two periods. Our accurate mapping of SOC stocks, their spatial distribution characteristics, influencing factors, and main controlling factors in forest areas will assist soil management and help assess environmental changes in the region.


2011 ◽  
Vol 8 (5) ◽  
pp. 1053-1065 ◽  
Author(s):  
M. P. Martin ◽  
M. Wattenbach ◽  
P. Smith ◽  
J. Meersmans ◽  
C. Jolivet ◽  
...  

Abstract. Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC) stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils. The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions) over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the previously published approach at the European level greatly overestimates SOC stocks.


2021 ◽  
Vol 13 (15) ◽  
pp. 8332
Author(s):  
Snežana Jakšić ◽  
Jordana Ninkov ◽  
Stanko Milić ◽  
Jovica Vasin ◽  
Milorad Živanov ◽  
...  

Topography-induced microclimate differences determine the local spatial variation of soil characteristics as topographic factors may play the most essential role in changing the climatic pattern. The aim of this study was to investigate the spatial distribution of soil organic carbon (SOC) with respect to the slope gradient and aspect, and to quantify their influence on SOC within different land use/cover classes. The study area is the Region of Niš in Serbia, which is characterized by complex topography with large variability in the spatial distribution of SOC. Soil samples at 0–30 cm and 30–60 cm were collected from different slope gradients and aspects in each of the three land use/cover classes. The results showed that the slope aspect significantly influenced the spatial distribution of SOC in the forest and vineyard soils, where N- and NW-facing soils had the highest level of organic carbon in the topsoil. There were no similar patterns in the uncultivated land. No significant differences were found in the subsoil. Organic carbon content was higher in the topsoil, regardless of the slope of the terrain. The mean SOC content in forest land decreased with increasing slope, but the difference was not statistically significant. In vineyards and uncultivated land, the SOC content was not predominantly determined by the slope gradient. No significant variations across slope gradients were found for all observed soil properties, except for available phosphorus and potassium. A positive correlation was observed between SOC and total nitrogen, clay, silt, and available phosphorus and potassium, while a negative correlation with coarse sand was detected. The slope aspect in relation to different land use/cover classes could provide an important reference for land management strategies in light of sustainable development.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1438
Author(s):  
Snežana Jakšić ◽  
Jordana Ninkov ◽  
Stanko Milić ◽  
Jovica Vasin ◽  
Milorad Živanov ◽  
...  

Spatial distribution of soil organic carbon (SOC) is the result of a combination of various factors related to both the natural environment and anthropogenic activities. The aim of this study was to examine (i) the state of SOC in topsoil and subsoil of vineyards compared to the nearest forest, (ii) the influence of soil management on SOC, (iii) the variation in SOC content with topographic position, (iv) the intensity of soil erosion in order to estimate the leaching of SOC from upper to lower topographic positions, and (v) the significance of SOC for the reduction of soil’s susceptibility to compaction. The study area was the vineyard region of Niš, which represents a medium-sized vineyard region in Serbia. About 32% of the total land area is affected, to some degree, by soil erosion. However, according to the mean annual soil loss rate, the total area is classified as having tolerable erosion risk. Land use was shown to be an important factor that controls SOC content. The vineyards contained less SOC than forest land. The SOC content was affected by topographic position. The interactive effect of topographic position and land use on SOC was significant. The SOC of forest land was significantly higher at the upper position than at the middle and lower positions. Spatial distribution of organic carbon in vineyards was not influenced by altitude, but occurred as a consequence of different soil management practices. The deep tillage at 60–80 cm, along with application of organic amendments, showed the potential to preserve SOC in the subsoil and prevent carbon loss from the surface layer. Penetrometric resistance values indicated optimum soil compaction in the surface layer of the soil, while low permeability was observed in deeper layers. Increases in SOC content reduce soil compaction and thus the risk of erosion and landslides. Knowledge of soil carbon distribution as a function of topographic position, land use and soil management is important for sustainable production and climate change mitigation.


2021 ◽  
Vol 7 (9) ◽  
pp. eaaz5236 ◽  
Author(s):  
Umakant Mishra ◽  
Gustaf Hugelius ◽  
Eitan Shelef ◽  
Yuanhe Yang ◽  
Jens Strauss ◽  
...  

Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that 1014−175+194 Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate.


2021 ◽  
pp. 1-19
Author(s):  
Yingcong Ye ◽  
Yefeng Jiang ◽  
Lihua Kuang ◽  
Yi Han ◽  
Zhe Xu ◽  
...  

2021 ◽  
Vol 129 ◽  
pp. 107965
Author(s):  
Wenjie Liu ◽  
Yamin Jiang ◽  
Qiu Yang ◽  
Huai Yang ◽  
Yide Li ◽  
...  

2003 ◽  
Vol 83 (4) ◽  
pp. 363-380 ◽  
Author(s):  
A. J. VandenBygaart ◽  
E. G. Gregorich ◽  
D. A. Angers

To fulfill commitments under the Kyoto Protocol, Canada is required to provide verifiable estimates and uncertainties for soil organic carbon (SOC) stocks, and for changes in those stocks over time. Estimates and uncertainties for agricultural soils can be derived from long-term studies that have measured differences in SOC between different management practices. We compiled published data from long-term studies in Canada to assess the effect of agricultural management on SOC. A total of 62 studies were compiled, in which the difference in SOC was determined for conversion from native land to cropland, and for different tillage, crop rotation and fertilizer management practices. There was a loss of 24 ± 6% of the SOC after native land was converted to agricultural land. No-till (NT) increased the storage of SOC in western Canada by 2.9 ± 1.3 Mg ha-1; however, in eastern Canada conversion to NT did not increase SOC. In general, the potential to store SOC when NT was adopted decreased with increasing background levels of SOC. Using no-tillage, reducing summer fallow, including hay in rotation with wheat (Triticum aestivum L.), plowing green manures into the soil, and applying N and organic fertilizers were the practices that tended to show the most consistent in creases in SOC storage. By relating treatment SOC levels to those in the control treatments, SOC stock change factors and their levels of uncertainty were derived for use in empirical models, such as the United Nations Intergovernmental Panel on Climate Change (IPCC). Guidelines model for C stock changes. However, we must be careful when attempting to extrapolate research plot data to farmers’ fields since the history of soil and crop management has a significant influence on existing and future SOC stocks. Key words: C sequestration, tillage, crop rotations, fertilizer, cropping intensity, Canada


Sign in / Sign up

Export Citation Format

Share Document