scholarly journals Ombilin Basin as Inverted Oblique Rift in Barisan Mountains, Sumatra: Considerations on Subsidence Mechanisms and Fault Development

2021 ◽  
Vol 1 (2) ◽  
pp. 89-102
Author(s):  
Aldo Febriansyah Putra ◽  

Ombilin Basin is a NW-SE inverted oblique rift which is currently being part of Barisan Mountains in western Central Sumatra. Regarding its current position, Ombilin Basin can be one of the windows to see the evolution of Barisan Mountains since Paleogene. Two schools of thought, namely rift basin and pull-apart basin, have been established to explain the evolution of Ombilin Basin. This paper aims to present another perspective on the evolution of Ombilin Basin based on subsidence mechanisms and fault development. This study integrated remote sensing and subsurface interpretations. Remote sensing interpretation took the role to delineate surface fault lineaments using digital elevation model, while subsurface interpretation dealt with log and seismic interpretations, subsidence analysis, and palinspatic reconstruction. Fault lineaments derived both from remote sensing and seismic interpretations were combined to construct structural framework of the basin. Subsidence analysis generated geohistory and backstripped tectonic subsidence charts. Palinspatic reconstruction illustrated structural configurations through time. This study figured out that Ombilin Basin went through fault-controlled subsidence in Middle Eocene – Late Oligocene and thermal subsidence in Early Miocene – Late Pliocene. Each subsidence mechanism was terminated by an uplift. Subsidence mechanisms in Ombilin Basin represented the criteria of rift basin in terms of amount and rate of tectonic subsidence, duration of subsidence, and contribution of thermal subsidence. On the other hand, fault development captures extensional and strike-slip components during rifting and development of flower structures during inversion of the basin. Oblique rifting operates when dominant extensional component works together with strike-slip component. Therefore, subsidence mechanisms and fault development are in agreement to regard Ombilin Basin as inverted oblique rift.

Lithosphere ◽  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Liguang Mao ◽  
Xianzheng Zhao ◽  
Shixun Zhang ◽  
Yumeng Su ◽  
Fengming Jin ◽  
...  

Abstract The Bohai Bay Basin in East Asia is a rift basin created by Cenozoic subduction of the oceanic Pacific plate beneath the Asia continent. Many prior studies suggest that the basin was initially formed in the Paleocene with the development of several NNE-trending extensional grabens, but subsequently impacted by right-lateral shear along these existing NNE-trending structures in the middle Eocene, transforming the Bohai Bay Basin into a transtensional basin and producing EW-trending grabens in the Bozhong and the northeastern Huanghua depressions. However, how this transformation occurred remains to be fully understood. Based on seismic and drilling data, we herein investigated the fault structures, basin architecture, and evolutionary stages of the Huanghua Depression in the central-west Bohai Bay Basin to examine the strain partitioning and evolution mechanism during the Paleogene syn-rifting stage. The results reveal that the Huanghua Depression is composed of three structurally distinctive zones, namely, a dextral transtensional, a NW-SE extensional, and a N-S extensional zones from southwest to northeast, which are separated from each other by two transfer zones. The NW-SE extensional zone is interpreted as a horsetail structure on the northern termination of the dextral transtensional zone. This dextral transtensional zone and the Tan-Lu Fault zone to the east served as strike-slip boundaries within which EW-trending depressions such as the northeastern Huanghua and Bozhong depressions formed in the middle Eocene.


2016 ◽  
Vol 1 (2) ◽  
Author(s):  
C. P. Singh ◽  
R. Bajpai ◽  
R. P. Singh ◽  
D. K. Upreti

In alpine Himalaya, the niche map of lichens and its characteristics is a gap area. A novel approach of improving the bioclimatic envelop through use of remote sensing inputs was employed. The 19 bioclimatic indices and digital elevation model were used for training niche models through occurrence records of 33 lichen species across Indian Himalaya. Substratum correction was carried out using LU/LC data. About 45% of the total geographic area studied is found to be very conducive (with niche probability > 70%) for the growth of lichens with predictive accuracy of 91% ascertained through cross-validation. Jammu and Kashmir is having highest niche area (36.02%); however, average probability niche score is highest in Uttarakhand (81.08). Area between 27o - 28o N latitude is having highest area however average probability score is highest in 30o - 31o N. Overall maximum niche area (35.50 %) is found in the regions dominated by alpine meadow, alpine grasslands and parts of cold deserts. The potential use lies in reporting yet to be explored lichens in the Indian Himalaya.


2021 ◽  
Vol 314 ◽  
pp. 05002
Author(s):  
Hasna Moumni ◽  
Karima Sebari ◽  
Laila Stour ◽  
Abdellatif Ahbari

The availability, accessibility and quality of data are significant obstacles to hydrological modelling. Estimating the initial values of the hydrological model´’ ’s parameters is a laborious and determining task requiring much attention. Geographic information systems (GIS) and spatial remote sensing are prometting tools for processing and collecting data. In this work, we use an innovative approach to estimate the HEC-HMS hydrological model parameters from the soil map of Africa (250m), the land use map GLC30, the depth to bedrock map, the digital elevation model and observed flow data. The estimation approach is applied to the Ouergha basin (Sebou, Morocco). The proposed approach’s interest is to feed the HEC-HMS hydrological model with initial values of parameters close to the study area reality instead of using random parameters.


Author(s):  
A.B. Baibatsha

For work materials used multispectral satellite imagery Landsat (7 channels), medium spatial resolution (14,25–90 m) and a digital elevation model (data SRTM). For interpretation of satellite images and especially their infrared and thermal channels allocated buried paleovalleys pre-paleogene age. Their total length is 228 km. By manifestation of the content of remote sensing paleovalleys distinctly divided into two types, long ribbon-like read in materials and space survey highlights a network of small lakes. By the nature of the relationship established that the second type of river paleovalleys flogs first. On this basis, proposed to allocate two uneven river paleosystem. The most ancient paleovalleys first type can presumably be attributed to karst erosion, blurry chalk and carbon deposits foundation. Paleovalleys may include significant groundwater resources as drinking and industrial purposes. Also we can control the position paleovalleys zinc and bauxite mineralization area and alluvial deposits include uranium mineralization valleys infiltration type and placer gold. Direction paleovalleys choppy, but in general they have a north-east orientation, which is controlled by tectonic zones of the foundation. These zones are defined as the burial place themselves paleovalleys and position of karst cavities in areas interfacing with other structures orientation. The association of mineralization to the caverns in the beds paleovalleys could generally present conditions of formation of mineralization and carry it to the "Niagara" type. The term is obviously best reflects the mechanism of formation of these ores.


2021 ◽  
Author(s):  
Åse Hestnes ◽  
Deta Gasser ◽  
Thomas Scheiber ◽  
Joachim Jacobs ◽  
Anna K. Ksienzyk ◽  
...  

<p>Brittle fracture and fault networks control the location of topographic features such as valleys and ridges and active faulting can lead to topographic rejuvenation. In Western Norway, however, it is debated how much faulting has contributed to rejuvenating of the topography during the late Mesozoic and Cenozoic. Geometric and temporal constraints on the brittle evolution are therefore important to obtain a comprehensive picture of the post-Caledonian topographic evolution of this region. In this study, we combine remote sensing, structural field measurements, paleo-stress analysis and isotopic dating to study the brittle evolution of a larger region of Western Norway. The region spans from the Sognefjord in the south to the Møre margin in the north. Lineament studies reveal important lineament sets trending N-S, NE-SW, E-W and NW-SE. Field observations show that these lineament sets correspond to both dip-slip and strike-slip faults, some of them parallel to ductile precursor structures and some cutting the ductile fabric. Epidote, chlorite, quartz and zeolite are the dominant mineralizations on fracture and fault surfaces. There is no clear correlation between the type of mineralization and fracture orientation in the region. Paleostress analysis on fault-slip data (n = 173), including faults reactivating older structures, show a good fit with a general E-W extensional regime. However, a considerable amount of faults (n = 115) formed under a strike-slip regime, which has so far not been documented in the region. We combine these findings with K-Ar fault gouge dating from six faults where five fractions (6-10 µm, 2-6 µm, 0.4-2 µm, 0.1-0.4 µm, <0.1µm) from each sample were analysed. These faults represent two of the four fracture sets observed, trending N-S and NE-SW, respectively, and show either strike-slip or dip-slip kinematics. XRD-data from these gouges show that K-feldspar and smectite are the main sources of potassium. The ages show a spread from the Triassic to the Cretaceous, where older ages can be affected by K-feldspar inherited from the host rock. Our results point to an important phase of Mesozoic strike-slip faulting in the region, with steep faults controlling the location of several major valleys. Extensional dip-slip faults might have contributed to the rejuvenation of the footwall topography.</p>


2021 ◽  
Author(s):  
Federico Rabuffi ◽  
Massimo Musacchio ◽  
Francesco Salvini ◽  
Malvina Silvestri ◽  
Maria Fabrizia Buongiorno

<p>Remote Sensing is a proven tool to study the Earth's surface and allows to analyze the wide portion of the surfaces by using different platforms/sensors (e.g. optical and active remote sensing, lidar), giving the possibility of multidisciplinary and multiscale approaches. In the proposed study, remote sensing analysis provides the possibility to understand the relationship between tectonic structures, lithology, and geothermal manifestations, and to test these techniques to monitor geothermal areas. This study allowed us to better understand the structural framework of a geothermal area, located in Southern Tuscany, highlighting the role of brittle deformation to produce an enhanced pathway for fluid migrations and upwelling.</p><p>The studied area is the “Parco Naturalistico delle Biancane” (PNB) in the Grosseto province and belongs to the Cenozoic Tyrrhenian-Apennine orogenic system. The tectonic framework includes a fault and thrust belt setting derived from the collision between the Corsica-Sardinia Block and Adriatic Plate during late Oligocene-Miocene times. This process determined the pile-up of several tectonic units which are, from the top: (1) Ligurian Units consisting of ophiolitic rocks and pelagic sediments (Jurassic - Oligocen); (2) Cretaceous-Oligocene terrigenous deposits; (3) The Mesozoic Tuscan Nappe. Successively, the belt was affected by a regional, mainly extensional tectonics, then a magmatic intrusion affected this thinned Tyrrhenian belt to form the Tuscan Magmatic Province. In Recent time, the region underwent a general, yet differentiated uplift, and the major geothermal areas locate to the relative higher zone. This provides the Southern Tuscany to be the main Italian geothermal area.</p><p>In this study, we analyzed the area from several points of view. The lineament domain analysis was performed in a multiscale approach: from 90 meters to 5 meters of pixel size, including 30 m and 10 m. This multiscale analysis allowed the identification of a number of lineament clusters related to the different tectonic phases which affected the PNB area. The found lineament distribution (in terms of azimuth and length) reflects the geodynamics effects on the surface, their clustering was related to the various crustal stress trajectories both at the regional and local scales.</p>


Geosciences ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 248 ◽  
Author(s):  
Mariaelena Cama ◽  
Calogero Schillaci ◽  
Jan Kropáček ◽  
Volker Hochschild ◽  
Alberto Bosino ◽  
...  

Soil erosion represents one of the most important global issues with serious effects on agriculture and water quality, especially in developing countries, such as Ethiopia, where rapid population growth and climatic changes affect widely mountainous areas. The Meskay catchment is a head catchment of the Jemma Basin draining into the Blue Nile (Central Ethiopia) and is characterized by high relief energy. Thus, it is exposed to high degradation dynamics, especially in the lower parts of the catchment. In this study, we aim at the geomorphological assessment of soil erosion susceptibilities. First, a geomorphological map was generated based on remote sensing observations. In particular, we mapped three categories of landforms related to (i) sheet erosion, (ii) gully erosion, and (iii) badlands using a high-resolution digital elevation model (DEM). The map was validated by a detailed field survey. Subsequently, we used the three categories as dependent variables in a probabilistic modelling approach to derive the spatial distribution of the specific process susceptibilities. In this study we applied the maximum entropy model (MaxEnt). The independent variables were derived from a set of spatial attributes describing the lithology, terrain, and land cover based on remote sensing data and DEMs. As a result, we produced three separate susceptibility maps for sheet and gully erosion as well as badlands. The resulting susceptibility maps showed good to excellent prediction performance. Moreover, to explore the mutual overlap of the three susceptibility maps, we generated a combined map as a color composite where each color represents one component of water erosion. The latter map yields useful information for land-use managers and planning purposes.


Sign in / Sign up

Export Citation Format

Share Document