scholarly journals Identification and validation of key miRNAs and miRNA–mRNA regulatory network associated with uterine involution in postpartum Kazakh sheep

2021 ◽  
Vol 64 (1) ◽  
pp. 119-129
Author(s):  
Heng Yang ◽  
Lin Fu ◽  
Qifeng Luo ◽  
Licai Li ◽  
Fangling Zheng ◽  
...  

Abstract. MicroRNAs (miRNAs) are widely expressed in different mammalian tissues and exert their biological effects through corresponding target genes. miRNA target genes can be rapidly and efficiently identified and screened by combining bioinformatics prediction and experimental validation. To investigate the possible molecular regulatory mechanisms involving miRNAs during uterine involution in postpartum ewes, we used Illumina HiSeq sequencing technology to screen for the number and characteristics of miRNAs in faster uterine involution and normal uterine involution group. A total of 118 differentially expressed miRNAs, including 33 known miRNAs and 85 new miRNAs, were identified in the hypothalamic library, whereas 54 miRNAs, including 5 known miRNAs and 49 new miRNAs, were identified in the uterine library. Screening with four types of gene prediction software revealed 73 target genes associated with uterine involution, and subsequently, GO annotation and KEGG pathway analysis were performed. The results showed that, in the hypothalamic–uterine axis, uterine involution in postpartum ewes might primarily involve two miRNA-target gene pairs, namely, miRNA-200a–PTEN and miRNA-133–FGFR1, which can participate in GnRH signal transduction in the upstream hypothalamus and in the remodeling process at the downstream uterus, through the PI3K–AKT signaling pathway to influence the recovery of the morphology and functions of the uterus during the postpartum period in sheep. Therefore, identification of differentially expressed miRNAs in this study fills a gap in the research related to miRNAs in uterine involution in postpartum ewes and provides an important reference point for a comprehensive understanding of the molecular mechanisms underlying the regulation of postpartum uterine involution in female livestock.

2018 ◽  
Author(s):  
yuanshuai Fu ◽  
Zhe Xu ◽  
Zaizhong Chen ◽  
Bin Wen ◽  
Jianzhong Gao

The discus fish (Symphysodon aequifasciatus) is an ornamental fish that is well-known around the world. Phenotype investigation indicated that there are no significant differences in appearance between males and females of the discus fish. To better understand the sexual development mechanisms and obtain a high efficiency sex identification method in the artificial reproduction process of the discus fish, we constructed six cDNA libraries from three adult testes and three adult ovaries, and perform RNA-sequencing for identifying sex-biased candidate genes, microRNA (miRNA), and metabolic pathway using the Illumina Hiseq 4000. A total of 50,082 non-redundant genes (unigenes) were identified, of which 18,570 unigenes were significantly overexpressed in testes, and 11,182 unigenes were significantly overexpressed in ovaries, and 8 differentially expressed unigenes were validated by quantitative Real-Time PCR (qPCR). A total of 551 miRNAs were identified, of which 47 miRNAs were differentially expressed between testes and ovaries, and 7 differentially expressed miRNAs and one non-differential miRNA were validated by qPCR. Twenty-four of these differentially expressed miRNAs and their 15 predicted target genes constituted 41 important miRNA-mRNA interaction pairs, which may be important candidates for sex-related miRNAs and sex-related genes in the discus fish. Some of vital sex-related metabolic pathways were also identified that may play key roles in regulating gonad development of the discus fish. These results can provide important insights to better understand molecular mechanisms for sexual dimorphism in gonads development.


2017 ◽  
Vol 37 (5) ◽  
Author(s):  
Xiaolin Wu ◽  
Xipeng Chen ◽  
Wenxiang Mi ◽  
Tingting Wu ◽  
Qinhua Gu ◽  
...  

Peri-implantitis, which is characterized by dense inflammatory infiltrates and increased osteoclast activity, can lead to alveolar bone destruction and implantation failure. miRNAs participate in the regulation of various inflammatory diseases, such as periodontitis and osteoporosis. Therefore, the present study aimed to investigate the differential expression of miRNAs in canine peri-implantitis and to explore the functions of their target genes. An miRNA sequence analysis was used to identify differentially expressed miRNAs in peri-implantitis. Under the criteria of a fold-change >1.5 and P<0.01, 8 up-regulated and 30 down-regulated miRNAs were selected for predictions of target genes and their biological functions. Based on the results of Gene Ontology (GO) and KEGG pathway analyses, these miRNAs may fine-tune the inflammatory process in peri-implantitis through an intricate mechanism. The results of quantitative real-time PCR (qRT-PCR) revealed that let-7g, miR-27a, and miR-145 may play important roles in peri-implantitis and are worth further investigation. The results of the present study provide insights into the potential biological effects of the differentially expressed miRNAs, and specific enrichment of target genes involved in the mitogen-activated protein kinase (MAPK) signaling pathway was observed. These findings highlight the intricate and specific roles of miRNAs in inflammation and osteoclastogenesis, both of which are key aspects of peri-implantitis, and thus may contribute to future investigations of the etiology, underlying mechanism, and treatment of peri-implantitis.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Qi-Long Chen ◽  
Yi-Yu Lu ◽  
Gui-Biao Zhang ◽  
Ya-Nan Song ◽  
Qian-Mei Zhou ◽  
...  

Traditional Chinese medicine (TCM) treatment is regarded as a safe and effective method for many diseases. In this study, the characteristics among excessive, excessive-deficient, and deficient syndromes of Hepatocellular carcinoma (HCC) were studied using miRNA array data. We first calculated the differentially expressed miRNAs based on random modulet-test and classified three TCM syndromes of HCC using SVM method. Then, the weighted miRNA-target networks were constructed for different TCM syndromes using predicted miRNA targets. Subsequently, the prioritized target genes of upexpression network of TCM syndromes were analyzed using DAVID online analysis. The results showed that there are distinctly different hierarchical cluster and network structure of TCM syndromes in HCC, but the excessive-deficient combination syndrome is extrinsically close to deficient syndrome. GO and pathway analysis revealed that the molecular mechanisms of excessive-deficient and deficient syndromes of HCC are more complex than excessive syndrome. Furthermore, although excessive-deficient and deficient syndromes have similar complex mechanisms, excessive-deficient syndrome is more involved than deficient syndrome in development of cancer process. This study suggested that miRNAs might be important mediators involved in the changing process from excessive to deficient syndromes and could be potential molecular markers for the diagnosis of TCM syndromes in HCC.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 591 ◽  
Author(s):  
Chen ◽  
Huo ◽  
Yang ◽  
Jian ◽  
Qu ◽  
...  

Oilseed rape (Brassica napus) is the second largest oilseed crop worldwide. As an architecture component of B. napus, thickness of pod canopy (TPC) plays an important role in yield formation, especially under high-density cultivation conditions. However, the mechanisms underlying the regulation of TPC remain unclear. RNA and microRNA (miRNA) profiling of two groups of B. napus lines with significantly different TPC at the bolting with a tiny bud stage revealed differential expressions of numerous genes involved in nitrogen-related pathways. Expression of several nitrogen-related response genes, including ASP5, ASP2, ASN3, ATCYSC1, PAL2, APT2, CRTISO, and COX15, was dramatically changed in the thick TPC lines compared to those in the thin TPC lines. Differentially expressed miRNAs also included many involved in nitrogen-related pathways. Expression of most target genes was negatively associated with corresponding miRNAs, such as miR159, miR6029, and miR827. In addition, 12 (including miR319, miR845, and miR158) differentially expressed miRNAs between two plant tissues sampled (stem apex and flower bud) were identified, implying that they might have roles in determining overall plant architecture. These results suggest that nitrogen signaling may play a pivotal role in regulating TPC in B. napus.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Li Shi ◽  
Yao Shi ◽  
Ya Zhang ◽  
Xiaolan Liao

Abstract The tobacco cutworm, Spodoptera litura, is an important pest of crop and vegetable plants worldwide, and its resistance to insecticides have quickly developed. However, the resistance mechanisms of this pest are still unclear. In this study, the change in mRNA and miRNA profiles in the susceptible, indoxacarb-resistant and field indoxacarb-resistant strains of S. litura were characterized. Nine hundred and ten co-up-regulated and 737 co-down-regulated genes were identified in the resistant strains. Further analysis showed that 126 co-differentially expressed genes (co-DEGs) (cytochrome P450, carboxy/cholinesterase, glutathione S-transferase, ATP-binding cassette transporter, UDP-glucuronosyl transferase, aminopeptidase N, sialin, serine protease and cuticle protein) may play important roles in indoxacarb resistance in S. litura. In addition, a total of 91 known and 52 novel miRNAs were identified, and 10 miRNAs were co-differentially expressed in the resistant strains of S. litura. Furthermore, 10 co-differentially expressed miRNAs (co-DEmiRNAs) had predicted co-DEGs according to the expected miRNA-mRNA negative regulation pattern and 37 indoxacarb resistance-related co-DEGs were predicted to be the target genes. These results not only broadened our understanding of molecular mechanisms of insecticide resistance by revealing complicated profiles, but also provide important clues for further study on the mechanisms of miRNAs involved in indoxacarb resistance in S. litura.


2020 ◽  
Vol 23 (2) ◽  
pp. 148-156
Author(s):  
Wei Wang ◽  
Bin Liu ◽  
Xiaoran Duan ◽  
Xiaolei Feng ◽  
Tuanwei Wang ◽  
...  

Objective: The aim of this study areto screen MicroRNAs (miRNAs) related to the prognosis of lung adenocarcinoma (LUAD) and to explore the possible molecular mechanisms. Methods: The data for a total of 535 patients with LUAD data were downloaded from The Cancer Genome Atlas (TCGA) database. The miRNAs for LUAD prognosis were screened by both Cox risk proportional regression model and Last Absolute Shrinkage and Selection Operator (LASSO) regression model. The performances of the models were verified by time-dependent Receiver Operating Characteristic (ROC) curve. The possible biological processes linked to the miRNAs’ target genes were analyzed by Gene Ontology (GO), Kyoto gene and genome encyclopedia (KEGG). Results: Among 127 differentially expressed miRNAs identified from the screening analysis, there are 111 up-regulated and 16 down-regulated miRNAs. Three of them, hsa-miR-1293, hsa-miR-490 and hsa-miR- 5571, were also significantly associated with the survival of the LUAD patients. The targets of the three miRNAs are significantly enriched in systemic lupus erythematosus pathways. Conclusion: Hsa-miR-1293, hsa-miR-490 and hsa-miR-5571 can be potentially used as novel biomarkers for the prognosis prediction of LUAD.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1567-1567
Author(s):  
Hanyang Lin ◽  
Jonathan Zeng ◽  
Katharina Rothe ◽  
Jens Ruschmann ◽  
Oleh Petriv ◽  
...  

Abstract Therapeutic targeting of BCR-ABL with selective ABL tyrosine kinase inhibitors (TKIs) has led to a significant survival benefit for early phase CML. However, TKI monotherapies are rarely curative, with persistence of leukemic stem cells, emergence of resistance and relapses remaining as challenges. To identify differentially expressed and new miRNAs in CD34+ CML stem/progenitor cells that might serve as potential biomarkers and/or therapeutic targets, we have performed Illumina Deep Sequencing to obtain absolute miRNA expression profiles of highly purified CD34+ cells obtained at newly diagnosed stage from six CML patients. Three of the patients were classified retrospectively, after imatinib (IM) therapy, as IM-responders and three as IM-nonresponders. CD34+ cells isolated from five normal bone marrow (NBM) samples were similarly analyzed as controls. Bioconductor DESeq2 analysis revealed 63 differentially expressed miRNAs between CML and NBM samples (adjusted P<0.05). Most differentially expressed miRNAs identified were down-regulated in CML compared to NBM, while 17 were up-regulated. Interestingly, 12 miRNAs were found to be differentially expressed between the IM-responders and IM-nonresponders. In addition, 34 novel miRNAs were identified in the CD34+ CML stem/progenitor cells. We next validated the sequencing data in a larger cohort of samples. CD34+ cells from IM-responders (n=12), IM-nonresponders (n=10) and normal individuals (n=11) were analyzed using a high-throughput qPCR microfluidics device. These studies confirmed the differential expression in CD34+ CML cells of 32 of the 63 miRNAs (adjusted P<0.05), including an increased level of oncomirs miR-155 and miR-17-92, and a decreased level of tumor suppressors miR-145, miR-151, and miR-452. Importantly, significant changes in some of these miRNAs were detected in CD34+ cells from CML patients (n=60) after three months of nilotinib (NL) treatment compared to the same patient samples before the treatment: expression of 18 miRNAs were normalized after NL therapy, whereas 10 showed little change. To further identify potential miRNA target genes, RNA-seq analysis was performed on the same RNA samples to correlate miRNA profiles with corresponding mRNA expression changes. Bioconductor RmiR analysis was performed to match miRNA target genes whose expression was inversely correlated with the expression of deregulated miRNAs based on three of six prediction algorithms (mirBase, TargetScan, miRanda, tarBase, mirTarget2, and PicTar). We have identified 1,210 differentially expressed mRNAs that are predicted targets of the deregulated miRNAs in the comparison of CML and NBM data. Interestingly, only seven differentially expressed genes were predicted targets of the deregulated miRNAs identified in a comparison of IM-responders and IM-nonresponders. Most of the predicted target genes are involved in cell cycle regulation, MAPK signaling and TGF-beta signaling pathways according to DAVID Bioinformatics Resources analysis, which clusters predicted target genes to known KEGG pathways. To elucidate the biological significance of the differentially expressed miRNAs in TKI-insensitive CML stem/progenitor cells, a number of functional assays were performed. An initial screen of eight miRNAs, selected for their novelty and CML-related potential target genes, was performed by transiently transfecting CML cells with miRNA mimics or inhibitors, and chemically synthesized RNAs which mimic or inhibit mature endogenous miRNAs. Four of the eight miRNA mimics/inhibitors transfected cells displayed significant growth disadvantages and enhanced sensitivity to TKI treatments based on trypan-blue exclusion, thymidine incorporation, apoptosis, and colony-forming cell assays. Q-RT-PCR analysis further showed reduced expression of their predicted target genes in cells transfected with miRNA mimics. Taken together, we have identified aberrant, differentially expressed miRNAs and their target genes in TKI-insensitive CML stem/progenitor cells that may serve as useful biomarkers to predict clinical response of CML patients to TKI therapy and ultimately lead to identification of new therapeutic targets for improved treatment options in CML. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 50 (4) ◽  
pp. 422-437 ◽  
Author(s):  
Guoting Liang ◽  
Jing Guo ◽  
Shuyong Zhang ◽  
Guangcan Zhang

Allelopathy is a hot topic of research; however, little is known regarding microRNA (miRNA) expression profiles in plants in response to allelochemicals. In this study, we combined the analyses of the transcriptome, small RNAs (sRNAs), and the degradome to identify key regulatory miRNA-targeted circuits under para-hydroxybenzoic acid (pHBA) stress. A total of 739 and 673 miRNAs were identified in leaves and roots, respectively. Of those, 214 and 148 miRNAs were significantly differentially expressed and identified as pHBA-responsive miRNAs in leaves and roots, respectively. The target genes for the pHBA-responsive miRNAs are involved in signal transduction, response to stress, and secondary metabolite pathways. Furthermore, an integrated analysis of the miRNA–target expression profiles was used to screen the 60 differentially expressed target genes from the 46 differentially expressed miRNAs in the leaves and the 51 differentially expressed target genes from the 36 differentially expressed miRNAs in roots. This integrated analysis revealed 17 and 30 pairs of miRNA targets in the leaves and roots, respectively, which had negatively correlated expression profiles. According to a real-time quantitative polymerase chain reaction (PCR) analysis, 14 miRNA–target pairs also exhibited negative correlations. Moreover, four coexpression regulatory networks were constructed based on the profiles of the differentially expressed miRNA–target pairs. These results suggest that comprehensive analyses of transcriptomes, sRNAs, and the degradome provide a useful platform for investigating the molecular mechanism underlying the pHBA-induced stress response in plants.


2020 ◽  
Author(s):  
Yang Gu ◽  
Shulan Zhang

Abstract Background: The molecular mechanisms of ovarian cancer (OC) remain unclear. We sought to comprehensively identify miRNAs that are aberrantly expressed in OC. Methods: Differentially expressed miRNAs were screened from six pairs of primary and metastatic OC tissues; their possible functions were then analyzed and target genes were predicted by bioinformatics. Then gene expression profiling results were established by reverse transcription quantitative polymerase chain reaction and western blot. Target binding between miR-7-5p and TGFβ2 was validated by dual-luciferase reporter assay. Results: Fifteen miRNAs and 10 target mRNAs were differentially expressed in primary and metastatic OC tissues. ITGB3, TGFβ2 and TNC correlated to miRNA function in metastatic OC. Compared with primary OC, RNA levels of hsa-miR-141-3p, hsa-miR-7-5p and hsa-miR-187-5p in metastatic OC tissues were potently decreased ( p < 0.05). However, a statistically prominent difference in hsa-miR-584-5p level between the two groups ( p > 0.05) was not observed. Comparing to primary OC, TGFβ2 and TNC were markedly increased ( p < 0.05). Luciferase activity was remarkably decreased after co-transfection of a wild-type TGFβ2 3’-UTR plasmid and miR-7-5p compared with a control plasmid, but no remarkable change after co-transfection of mutant TGFβ2 3’-UTR and miR-7-5p was demonstrated. Conclusions: Fifteen miRNAs and 10 mRNAs were differentially expressed in metastatic OC tissues compared with primary OC tissues, which suggested that they may participate in invasive and metastatic processes. Hsa-miR-141-3p, hsa-miR-187-5p and hsa-miR-7-5p expression was prominently lower in metastatic OC than in primary OC, while TGFβ2 and TNC expression was markedly higher in metastatic OC tissues. Hsa-miR-7-5p may bind to the TGFβ2 3’-UTR to inhibit its expression.


2021 ◽  
Author(s):  
Xiaoqian Luo ◽  
Weina Lu ◽  
Jianfeng Zhao ◽  
Jun Hu ◽  
Enjiang Chen ◽  
...  

Abstract BackgroundSepsis is a life-threatening medical condition caused by a dysregulated host response to infection. Recent studies have found that the expression of miRNAs is associated with the pathogenesis of sepsis and septic shock. Our study aimed to reveal which miRNAs may be involved in the dysregulated immune response in sepsis and how these miRNAs interact with transcription factors (TFs) using a computational approach with in vitro validation studies. MethodsTo determine the network of TFs, miRNAs and target genes involved in sepsis, GEO datasets GSE94717 and GSE131761 were used to identify differentially expressed miRNAs and DEGs. TargetScan and miRWalk databases were used to predict biological targets that overlap with the identified DEGs of differentially expressed miRNAs. The TransmiR database was used to predict the differential miRNA TFs that overlap with the identified DEGs. The TF-miRNA-mRNA network was constructed and visualized. Finally, qRT-PCR was used to verify the expression of TFs and miRNA in HUVECs. ResultBetween the healthy and sepsis groups, there were 146 upregulated and 98 downregulated DEGs in the GSE131761 dataset, and there were 1 upregulated and 183 downregulated DEMs in the GSE94717 dataset. A regulatory network of the TF-miRNA-target genes was established. According to the experimental results, RUNX3 was found to be downregulated while MAPK14 was upregulated, which corroborates the result of the computational expression analysis. In a HUVECs model, miR-19b-1-5p and miR-5009-5p were found to be significantly downregulated. Other TFs and miRNAs did not correlate with our bioinformatics expression analysis. ConclusionWe constructed a TF-miRNA-target gene regulatory network and identified potential treatment targets RUNX3, MAPK14, miR-19b-1-5p and miR-5009-5p. This information provides an initial basis for understanding the complex sepsis regulatory mechanisms.


Sign in / Sign up

Export Citation Format

Share Document