scholarly journals Chemical characterisation of iron in dust and biomass burning aerosols during AMMA-SOP0/DABEX: implication for iron solubility

2010 ◽  
Vol 10 (9) ◽  
pp. 4273-4282 ◽  
Author(s):  
R. Paris ◽  
K. V. Desboeufs ◽  
P. Formenti ◽  
S. Nava ◽  
C. Chou

Abstract. The chemical composition and the soluble fraction were determined in aerosol samples collected during flights of AMMA-SOP0/DABEX campaign, which were conducted in the West African Sahel during dry season (2006). Two aerosol types are encountered in this period: dust particles (DUST) and biomass burning aerosol (BB). Chemical analysis and microscope observations showed that the iron (Fe) found in BB samples mainly originates from dust particles mostly internally mixed in the biomass burning layer. Chemical analyses of samples showed that the Fe solubility is lower in African dust samples than in biomass burning aerosols. Our data provide a first idea of the variability of iron dust solubility in the source region (0.1% and 3.4%). We found a relationship between iron solubility/clay content/source which partly confirms that the variability of iron solubility in this source region is related to the character and origin of the aerosols themselves. In the biomass burning samples, no relationship were found between Fe solubility and either the concentrations of acidic species (SO42−, NO3− or oxalate) or the content of carbon (TC, OC, BC). Therefore, we were unable to determine what processes are involved in this increase of iron solubility. In terms of supply of soluble Fe to oceanic ecosystems on a global scale, the higher solubility observed for Fe in biomass burning could imply an indirect source of Fe to marine ecosystems. But these aerosols are probably not significant because the Sahara is easily the dominant source of Fe to the Atlantic Ocean.

2009 ◽  
Vol 9 (6) ◽  
pp. 25023-25047
Author(s):  
R. Paris ◽  
K. V. Desboeufs ◽  
P. Formenti ◽  
S. Nava ◽  
C. Chou

Abstract. Chemical composition and the soluble fraction (in MilliQ water) has been determined in aerosol samples collected during flights of AMMA-SOP0/DABEX campaign conducted in the West African Sahel during dry season (2006). Two types of samples are encountered in this period: dust particles (DUST) and biomass burning aerosol (BB). Chemical analysis and microscope observations show that iron (Fe) found in BB samples is mainly issued from dust particles externally mixed in the biomass burning layer. Chemical analyses of samples show that solubilities determined for Fe in samples of African dust were significantly lower than the solubilities in aerosols of biomass burning. Our data provide a first idea of the variability of iron dust solubility in the source region (0.1% and 3.4%). We found a relationship between iron solubility/clay content/source which partly confirms that the variability of iron solubility in this source region is related to the character and origin of the aerosols themselves. In the biomass burning samples, no relationship could be found between Fe solubility and the concentrations of acid species (SO42−,NO3− or oxalate) nor the content of carbon (TC, OC, BC) so we are unable to determine what are the processes involved in this increase of iron solubility. In terms of the supply of soluble Fe to oceanic ecosystems on a global scale, the observed higher solubility for Fe in biomass burning could imply an indirect source of Fe to marine ecosystem, but these aerosols are probably not significant because the Sahara is easily the dominant source of Fe to the Atlantic.


2019 ◽  
Vol 19 (24) ◽  
pp. 15217-15234 ◽  
Author(s):  
Sophie L. Haslett ◽  
Jonathan W. Taylor ◽  
Mathew Evans ◽  
Eleanor Morris ◽  
Bernhard Vogel ◽  
...  

Abstract. Vast stretches of agricultural land in southern and central Africa are burnt between June and September each year, which releases large quantities of aerosol into the atmosphere. The resulting smoke plumes are carried west over the Atlantic Ocean at altitudes between 2 and 4 km. As only limited observational data in West Africa have existed until now, whether this pollution has an impact at lower altitudes has remained unclear. The Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) aircraft campaign took place in southern West Africa during June and July 2016, with the aim of observing gas and aerosol properties in the region in order to assess anthropogenic and other influences on the atmosphere. Results presented here show that a significant mass of aged accumulation mode aerosol was present in the southern West African monsoon layer, over both the ocean and the continent. A median dry aerosol concentration of 6.2 µg m−3 (standard temperature and pressure, STP) was observed over the Atlantic Ocean upwind of the major cities, with an interquartile range from 5.3 to 8.0 µg m−3. This concentration increased to a median of 11.1 µg m−3 (8.6 to 15.7 µg m−3) in the immediate outflow from cities. In the continental air mass away from the cities, the median aerosol loading was 7.5 µg m−3 (5.9 to 10.5 µg m−3). The accumulation mode aerosol population over land displayed similar chemical properties to the upstream population, which implies that upstream aerosol is a significant source of aerosol pollution over the continent. The upstream aerosol is found to have most likely originated from central and southern African biomass burning. This demonstrates that biomass burning plumes are being advected northwards, after being entrained into the monsoon layer over the eastern tropical Atlantic Ocean. It is shown observationally for the first time that they contribute up to 80 % to the regional aerosol loading in the monsoon layer over southern West Africa. Results from the COSMO-ART (Consortium for Small-scale Modeling – Aerosol and Reactive Trace gases) and GEOS-Chem models support this conclusion, showing that observed aerosol concentrations over the northern Atlantic Ocean can only be reproduced when the contribution of transported biomass burning aerosol is taken into account. As a result, the large and growing emissions from the coastal cities are overlaid on an already substantial aerosol background. Simulations using COSMO-ART show that cloud droplet number concentrations can increase by up to 27 % as a result of transported biomass burning aerosol. On a regional scale this renders cloud properties and precipitation less sensitive to future increases in anthropogenic emissions. In addition, such high background loadings will lead to greater pollution exposure for the large and growing population in southern West Africa. These results emphasise the importance of including aerosol from across country borders in the development of air pollution policies and interventions in regions such as West Africa.


2019 ◽  
Vol 12 (7) ◽  
pp. 3789-3803 ◽  
Author(s):  
Sung-Kyun Shin ◽  
Matthias Tesche ◽  
Youngmin Noh ◽  
Detlef Müller

Abstract. This study proposes an aerosol-type classification based on the particle linear depolarization ratio (PLDR) and single-scattering albedo (SSA) provided in the AErosol RObotic NETwork (AERONET) version 3 level 2.0 inversion product. We compare our aerosol-type classification with an earlier method that uses fine-mode fraction (FMF) and SSA. Our new method allows for a refined classification of mineral dust that occurs as a mixture with other absorbing aerosols: pure dust (PD), dust-dominated mixed plume (DDM), and pollutant-dominated mixed plume (PDM). We test the aerosol classification at AERONET sites in East Asia that are frequently affected by mixtures of Asian dust and biomass-burning smoke or anthropogenic pollution. We find that East Asia is strongly affected by pollution particles with high occurrence frequencies of 50 % to 67 %. The distribution and types of pollution particles vary with location and season. The frequency of PD and dusty aerosol mixture (DDM+PDM) is slightly lower (34 % to 49 %) than pollution-dominated mixtures. Pure dust particles have been detected in only 1 % of observations. This suggests that East Asian dust plumes generally exist in a mixture with pollution aerosols rather than in pure form. In this study, we have also considered data from selected AERONET sites that are representative of anthropogenic pollution, biomass-burning smoke, and mineral dust. We find that average aerosol properties obtained for aerosol types in our PLDR–SSA-based classification agree reasonably well with those obtained at AERONET sites representative for different aerosol types.


Oryx ◽  
2017 ◽  
Vol 52 (3) ◽  
pp. 544-551 ◽  
Author(s):  
Fabio Petrozzi ◽  
Edem A. Eniang ◽  
Godfrey C. Akani ◽  
Nioking Amadi ◽  
Emmanuel M. Hema ◽  
...  

AbstractThe African spurred tortoise Centrochelys sulcata is the second largest terrestrial turtle, with a scattered distribution across the West African Sahel. This species is threatened and declining consistently throughout its range, but little is known about the causes of its decline. It has been hypothesized that the decline is attributable to (1) competition with domestic cattle, (2) wildfire, and (3) the international pet trade. We conducted a series of analyses to investigate these three causes. Hypotheses 1 and 2 were analysed using a spatially explicit approach, using a database of the Food and Agriculture Organization of the United Nations and logistic regression modelling; hypothesis 3 was tested by analysing the CITES trade database for 1990–2010. We found a significant negative correlation between intensity of grazing (expressed as density of cattle, km−2) and the presence of spurred tortoises, and this negative effect increased when coupled with high fire intensity, whereas wildfires alone did not have a significant influence on the species’ distribution at the global scale. There was a decrease in the annual export of wild individuals for the pet trade after the introduction of export quotas by country and by year, but trade data must be considered with caution.


2009 ◽  
Vol 9 (20) ◽  
pp. 8017-8038 ◽  
Author(s):  
S.-W. Kim ◽  
P. Chazette ◽  
F. Dulac ◽  
J. Sanak ◽  
B. Johnson ◽  
...  

Abstract. We present observations of tropospheric aerosol and water vapor transport over West Africa and the associated meteorological conditions during the AMMA SOP-0 dry season experiment, which was conducted in West Africa in January–February 2006. This study combines data from ultra-light aircraft (ULA)-based lidar, airborne in-situ aerosol and gas measurements, standard meteorological measurements, satellite-based aerosol measurements, airmass trajectories, and radiosonde measurements. At Niamey (13.5° N, 2.2° E) the prevailing surface wind (i.e. Harmattan) was from the northeast bringing dry dusty air from the Sahara desert. High concentrations of mineral dust aerosol were typically observed from the surface to 1.5 or 2 km associated with the Saharan airmasses. At higher altitudes the prevailing wind veered to the south or southeast bringing relatively warm and humid airmasses from the biomass burning regions to the Sahel (<10° N). These elevated layers had high concentrations of biomass burning aerosol and were typically observed between altitudes of 2–5 km. Meteorological analyses show these airmasses were advected upwards over the biomass burning regions through ascent in Inter-Tropical Discontinuity (ITD) zone. Aerosol vertical profiles obtained from the space-based lidar CALIOP onboard CALIPSO during January 2007 also showed the presence of dust particles (particle depolarization (δ)~30%, lidar Ångström exponent (LAE)<0, aerosol backscatter to extinction ratio (BER): 0.026~0.028 sr−1) at low levels (<1.5 km) and biomass burning smoke aerosol (δ<10%, LAE: 0.6~1.1, BER: 0.015~0.018 sr−1) between 2 and 5 km. CALIOP data indicated that these distinct continental dust and biomass burning aerosol layers likely mixed as they advected further south over the tropical Atlantic Ocean, as indicated an intermediate values of δ (10~17%), LAE (0.16~0.18) and BER (0.0021~0.0022 sr−1).


2009 ◽  
Vol 9 (1) ◽  
pp. 1831-1871
Author(s):  
S.-W. Kim ◽  
P. Chazette ◽  
F. Dulac ◽  
J. Sanak ◽  
B. Johnson ◽  
...  

Abstract. We present observations of tropospheric aerosol and water vapor transport over West Africa and the associated meteorological conditions during the AMMA SOP-0 dry season experiment, which was conducted in West Africa in January–February 2006. This study combines data from ultra-light aircraft (ULA)-based lidar, airborne in-situ aerosol and gas measurements, standard meteorological measurements, satellite-based aerosol measurements, airmass trajectories, and radiosonde measurements. At Niamey (13.5° N, 2.2° E) the prevailing surface wind was from the northeast bringing dry dusty air from the Sahara desert. High concentrations of mineral dust aerosol were typically observed from the surface to 1.5 or 2 km associated with the Saharan airmasses. At higher altitudes the prevailing wind veered to the south or southeast bringing relatively warm and humid airmasses from the biomass burning regions to the Sahel (<10° N). These elevated layers had high concentrations of biomass burning aerosol and were typically observed between altitudes of 2–5 km. Meteorological analyses show these airmasses were advected upwards over the biomass burning regions through large-scale ascent, presumably driven by surface heating rather than pyro-convection. Aerosol vertical profiles obtained from the space-based lidar CALIOP onboard CALIPSO during January 2007 also showed the presence of dust particles (depolarization ~30%, color ratio <0) at low levels (<1.5 km) and biomass burning smoke aerosol (depolarization ratio <10%) between 2 and 5 km. CALIOP data indicated that these distinct continental dust and biomass burning aerosol layers likely mixed as they advected further south over the tropical Atlantic Ocean.


2012 ◽  
Vol 12 (10) ◽  
pp. 25983-26028 ◽  
Author(s):  
S. Groß ◽  
M. Esselborn ◽  
B. Weinzierl ◽  
M. Wirth ◽  
A. Fix ◽  
...  

Abstract. During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE), 2006 (SAMUM-1) and 2008 (SAMUM-2 and EUCAARI), airborne High Spectral Resolution Lidar (HSRL) and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures – Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning aerosol, anthropogenic pollution aerosol, and marine aerosol have been studied. On the basis of this extensive HSRL data set, we present an aerosol classification scheme which is also capable to identify mixtures of different aerosol types. We calculated mixing lines that allowed us to determine the contributing aerosol types. The aerosol classification scheme was validated with in-situ measurements and backward trajectory analyses. Our results demonstrate that the developed aerosol mask is capable to identify complex stratifications with different aerosol types throughout the atmosphere.


2019 ◽  
Author(s):  
Sung-Kyun Shin ◽  
Matthias Tesche ◽  
Youngmin Noh ◽  
Detlef Müller

Abstract. This study proposes an aerosol-type classification based on the particle linear depolarization ratio (PLDR) and single scattering albedo (SSA) provided in the AErosol RObotic NETwork (AERONET) version 3 level 2.0 inversion product. We compare our aerosol-type classification with an earlier method that uses fine-mode fraction (FMF) and SSA. Our new method allows for a refined classification of mineral dust that occurs as a mixture with other absorbing aerosols: pure dust (PD), dust-dominated mixed plume (DDM), and pollutant-dominated mixed plume (PDM). We test the aerosol classification at AERONET sites in East Asia that are frequently affected by mixtures of Asian dust and biomass-burning smoke or anthropogenic pollution. We find that East Asia is strongly affected by pollution particles with high occurrence frequencies of 50 % to 67 %. The distribution and types of pollution particles vary with location and season. The frequency of PD and dusty aerosol mixture (DDM+PDM) is slightly lower (34 % to 49 %) than pollution-dominated mixtures. Pure dust particles have been detected in only 1 % of observations. This suggests that East Asian dust plumes generally exist in a mixture with pollution aerosols rather than in pure form. In this study, we have also considered data from selected AERONET sites that are representative of anthropogenic pollution, biomass-burning smoke, and mineral dust. We find that average aerosol properties obtained for aerosol types in our PLDR-SSA-based classification agree reasonably well with those obtained at AERONET sites representative for different aerosol types.


2020 ◽  
Vol 117 (36) ◽  
pp. 21928-21937
Author(s):  
Leif G. Jahn ◽  
Michael J. Polen ◽  
Lydia G. Jahl ◽  
Thomas A. Brubaker ◽  
Joshua Somers ◽  
...  

Ice nucleation and the resulting cloud glaciation are significant atmospheric processes that affect the evolution of clouds and their properties including radiative forcing and precipitation, yet the sources and properties of atmospheric ice nucleants are poorly constrained. Heterogeneous ice nucleation caused by ice-nucleating particles (INPs) enables cloud glaciation at temperatures above the homogeneous freezing regime that starts near −35 °C. Biomass burning is a significant global source of atmospheric particles and a highly variable and poorly understood source of INPs. The nature of these INPs and how they relate to the fuel composition and its combustion are critical gaps in our understanding of the effects of biomass burning on the environment and climate. Here we show that the combustion process transforms inorganic elements naturally present in the biomass (not soil or dust) to form potentially ice-active minerals in both the bottom ash and emitted aerosol particles. These particles possess ice-nucleation activities high enough to be relevant to mixed-phase clouds and are active over a wide temperature range, nucleating ice at up to −13 °C. Certain inorganic elements can thus serve as indicators to predict the production of ice nucleants from the fuel. Combustion-derived minerals are an important but understudied source of INPs in natural biomass-burning aerosol emissions in addition to lofted primary soil and dust particles. These discoveries and insights should advance the realistic incorporation of biomass-burning INPs into atmospheric cloud and climate models. These mineral components produced in biomass-burning aerosol should also be studied in relation to other atmospheric chemistry processes, such as facilitating multiphase chemical reactions and nutrient availability.


Sign in / Sign up

Export Citation Format

Share Document