scholarly journals Laboratory study on new particle formation from the reaction OH + SO<sub>2</sub>: influence of experimental conditions, H<sub>2</sub>O vapour, NH<sub>3</sub> and the amine tert-butylamine on the overall process

2010 ◽  
Vol 10 (15) ◽  
pp. 7101-7116 ◽  
Author(s):  
T. Berndt ◽  
F. Stratmann ◽  
M. Sipilä ◽  
J. Vanhanen ◽  
T. Petäjä ◽  
...  

Abstract. Nucleation experiments starting from the reaction of OH radicals with SO2 have been performed in the IfT-LFT flow tube under atmospheric conditions at 293±0.5 K for a relative humidity of 13–61%. The presence of different additives (H2, CO, 1,3,5-trimethylbenzene) for adjusting the OH radical concentration and resulting OH levels in the range (4–300) ×105 molecule cm−3 did not influence the nucleation process itself. The number of detected particles as well as the threshold H2SO4 concentration needed for nucleation was found to be strongly dependent on the counting efficiency of the used counting devices. High-sensitivity particle counters allowed the measurement of freshly nucleated particles with diameters down to about 1.5 nm. A parameterization of the experimental data was developed using power law equations for H2SO4 and H2O vapour. The exponent for H2SO4 from different measurement series was in the range of 1.7–2.1 being in good agreement with those arising from analysis of nucleation events in the atmosphere. For increasing relative humidity, an increase of the particle number was observed. The exponent for H2O vapour was found to be 3.1 representing an upper limit. Addition of 1.2×1011 molecule cm−3 or 1.2×1012 molecule cm−3 of NH3 (range of atmospheric NH3 peak concentrations) revealed that NH3 has a measureable, promoting effect on the nucleation rate under these conditions. The promoting effect was found to be more pronounced for relatively dry conditions, i.e. a rise of the particle number by 1–2 orders of magnitude at RH = 13% and only by a factor of 2–5 at RH = 47% (NH3 addition: 1.2×1012 molecule cm−3). Using the amine tert-butylamine instead of NH3, the enhancing impact of the base for nucleation and particle growth appears to be stronger. Tert-butylamine addition of about 1010 molecule cm−3 at RH = 13% enhances particle formation by about two orders of magnitude, while for NH3 only a small or negligible effect on nucleation in this range of concentration appeared. This suggests that amines can strongly influence atmospheric H2SO4-H2O nucleation and are probably promising candidates for explaining existing discrepancies between theory and observations.

2010 ◽  
Vol 10 (3) ◽  
pp. 6447-6484 ◽  
Author(s):  
T. Berndt ◽  
F. Stratmann ◽  
M. Sipilä ◽  
J. Vanhanen ◽  
T. Petäjä ◽  
...  

Abstract. Nucleation experiments starting from the reaction of OH radicals with SO2 have been performed in the IfT-LFT flow tube under atmospheric conditions at 293±0.5 K for a relative humidity of 13–61%. The presence of different additives (H2, CO, 1,3,5-trimethylbenzene) for adjusting the OH radical concentration and resulting OH levels in the range (4–300)·105 molecule cm−3 did not influence the nucleation process itself. The number of detected particles as well as the threshold H2SO4 concentration needed for nucleation was found to be strongly dependent on the counting efficiency of the used counting devices. High-sensitivity particle counters allowed the measurement of freshly nucleated particles with diameters down to about 1.5 nm. A parameterization of the experimental data was developed using power law equations for H2SO4 and H2O vapour. The exponent for H2SO4 from different measurement series was in the range of 1.7–2.1 being in good agreement with those arising from analysis of nucleation events in the atmosphere. For increasing relative humidity, an increase of the particle number was observed. The exponent for H2O vapour was found to be 3.1 representing a first estimate. Addition of 1.2·1011 molecule cm−3 or 1.2·1012 molecule cm−3 of NH3 (range of atmospheric NH3 peak concentrations) revealed that NH3 has a measureable, promoting effect on the nucleation rate under these conditions. The promoting effect was found to be more pronounced for relatively dry conditions. NH3 showed a contribution to particle growth. Adding the amine tert-butylamine instead of NH3, the enhancing impact for nucleation and particle growth appears to be stronger.


2013 ◽  
Vol 13 (9) ◽  
pp. 4593-4604 ◽  
Author(s):  
H. Saathoff ◽  
S. Henin ◽  
K. Stelmaszczyk ◽  
M. Petrarca ◽  
R. Delagrange ◽  
...  

Abstract. Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.


2017 ◽  
Vol 17 (2) ◽  
pp. 1529-1541 ◽  
Author(s):  
Clémence Rose ◽  
Karine Sellegri ◽  
Isabel Moreno ◽  
Fernando Velarde ◽  
Michel Ramonet ◽  
...  

Abstract. Global models predict that new particle formation (NPF) is, in some environments, responsible for a substantial fraction of the total atmospheric particle number concentration and subsequently contributes significantly to cloud condensation nuclei (CCN) concentrations. NPF events were frequently observed at the highest atmospheric observatory in the world, on Chacaltaya (5240 m a.s.l.), Bolivia. The present study focuses on the impact of NPF on CCN population. Neutral cluster and Air Ion Spectrometer and mobility particle size spectrometer measurements were simultaneously used to follow the growth of particles from cluster sizes down to ∼ 2 nm up to CCN threshold sizes set to 50, 80 and 100 nm. Using measurements performed between 1 January and 31 December 2012, we found that 61 % of the 94 analysed events showed a clear particle growth and significant enhancement of the CCN-relevant particle number concentration. We evaluated the contribution of NPF, relative to the transport and growth of pre-existing particles, to CCN size. The averaged production of 50 nm particles during those events was 5072, and 1481 cm−3 for 100 nm particles, with a larger contribution of NPF compared to transport, especially during the wet season. The data set was further segregated into boundary layer (BL) and free troposphere (FT) conditions at the site. The NPF frequency of occurrence was higher in the BL (48 %) compared to the FT (39 %). Particle condensational growth was more frequently observed for events initiated in the FT, but on average faster for those initiated in the BL, when the amount of condensable species was most probably larger. As a result, the potential to form new CCN was higher for events initiated in the BL (67 % against 53 % in the FT). In contrast, higher CCN number concentration increases were found when the NPF process initially occurred in the FT, under less polluted conditions. This work highlights the competition between particle growth and the removal of freshly nucleated particles by coagulation processes. The results support model predictions which suggest that NPF is an effective source of CCN in some environments, and thus may influence regional climate through cloud-related radiative processes.


2016 ◽  
Author(s):  
C. Rose ◽  
K. Sellegri ◽  
I. Moreno ◽  
F. Velarde ◽  
M. Ramonet ◽  
...  

Abstract. Global models predict that new particle formation (NPF) is, in some environments, responsible for a substantial fraction of the total atmospheric particle number concentration and subsequently contribute significantly to cloud condensation nuclei (CCN) concentrations. NPF events were frequently observed at the highest atmospheric observatory in the world, Chacaltaya (5240 m a.s.l.), Bolivia. The present study focuses on the impact of NPF on CCN population. Neutral cluster and Air Ion Spectrometer and mobility particle size spectrometer measurements were simultaneously used to follow the growth of particles from cluster sizes down to ~ 2 nm up to CCN threshold sizes set to 50, 80 and 100 nm. Using measurements performed between January 1 and December 31 2012, we found that 61% of the 94 analysed events showed a clear particle growth and significant enhancement of the CCN-relevant particle number concentration. We evaluated the contribution of NPF events relative to the transport of pre-existing particles to the site. The averaged production of 50 nm particles during those events was 5072 cm−3, and 1481 cm−3 for 100 nm particles, with a larger contribution of NPF compared to transport, especially during the wet season. The data set was further segregated into boundary layer (BL) and free troposphere (FT) conditions at the site. The NPF frequency of occurrence was higher in the BL (48 %) compared to the FT (39 %). Particle condensational growth was more frequently observed for events initiated in the FT, but on average faster for those initiated in the BL, when the amount of condensable species was most probably larger. As a result, the potential to form new CCN was higher for events initiated in the BL (67 % against 56 % in the FT). In contrast, higher CCN number concentration increases were found when the NPF process initially occurred in the FT, under less polluted conditions. This work highlights the competition between particle growth and the removal of freshly nucleated particles by coagulation processes. The results support model predictions which suggest that NPF is an effective source of CCN in some environments, and thus may influence regional climate through cloud related radiative processes.


2013 ◽  
Vol 6 (12) ◽  
pp. 3407-3423 ◽  
Author(s):  
B. Bonn ◽  
S. Sun ◽  
W. Haunold ◽  
R. Sitals ◽  
E. van Beesel ◽  
...  

Abstract. In this study we report the set-up of a novel twin chamber technique that uses the comparative method and establishes an appropriate connection of atmospheric and laboratory methods to broaden the tools for investigations. It is designed to study the impact of certain parameters and gases on ambient processes, such as particle formation online, and can be applied in a large variety of conditions. The characterisation of both chambers proved that both chambers operate identically, with a residence time xT (COMPASS1) = 26.5 ± 0.3 min and xT (COMPASS2) = 26.6 ± 0.4 min, at a typical flow rate of 15 L min−1 and a gas leak rate of (1.6 ± 0.8) × 10−5 s−1. Particle loss rates were found to be larger (due to the particles' stickiness to the chamber walls), with an extrapolated maximum of 1.8 × 10−3 s−1 at 1 nm, i.e. a hundredfold of the gas leak rate. This latter value is associated with sticky non-volatile gaseous compounds, too. Comparison measurement showed no significant differences. Therefore operation under atmospheric conditions is trustworthy. To indicate the applicability and the benefit of the system, a set of experiments was conducted under different conditions, i.e. urban and remote, enhanced ozone and terpenes as well as reduced sunlight. In order to do so, an ozone lamp was applied to enhance ozone in one of two chambers; the measurement chamber was protected from radiation by a first-aid cover and volatile organic compounds (VOCs) were added using a small additional flow and a temperature-controlled oven. During the elevated ozone period, ambient particle number and volume increased substantially at urban and remote conditions, but by a different intensity. Protection of solar radiation displayed a clear negative effect on particle number, while terpene addition did cause a distinct daily pattern. E.g. adding β pinene particle number concentration rose by 13% maximum at noontime, while no significant effect was observable during darkness. Therefore, the system is a useful tool for investigating local precursors and the details of ambient particle formation at surface locations as well as potential future feedback processes.


2009 ◽  
Vol 9 (13) ◽  
pp. 4387-4406 ◽  
Author(s):  
Th. F. Mentel ◽  
J. Wildt ◽  
A. Kiendler-Scharr ◽  
E. Kleist ◽  
R. Tillmann ◽  
...  

Abstract. Emission of biogenic volatile organic compounds (VOC) which on oxidation form secondary organic aerosols (SOA) can couple the vegetation with the atmosphere and climate. Particle formation from tree emissions was investigated in a new setup: a plant chamber coupled to a reaction chamber for oxidizing the plant emissions and for forming SOA. Emissions from the boreal tree species birch, pine, and spruce were studied. In addition, α-pinene was used as reference compound. Under the employed experimental conditions, OH radicals were essential for inducing new particle formation, although O3 (≤80 ppb) was always present and a fraction of the monoterpenes and the sesquiterpenes reacted with ozone before OH was generated. Formation rates of 3 nm particles were linearly related to the VOC carbon mixing ratios, as were the maximum observed volume and the condensational growth rates. For all trees, the threshold of new particle formation was lower than for α-pinene. It was lowest for birch which emitted the largest fraction of oxygenated VOC (OVOC), suggesting that OVOC may play a role in the nucleation process. Incremental mass yields were ≈5% for pine, spruce and α-pinene, and ≈10% for birch. α-Pinene was a good model compound to describe the yield and the growth of SOA particles from coniferous emissions. The mass fractional yields agreed well with observations for boreal forests. Despite the somewhat enhanced VOC and OH concentrations our results may be up-scaled to eco-system level. Using the mass fractional yields observed for the tree emissions and weighting them with the abundance of the respective trees in boreal forests SOA mass concentration calculations agree within 6% with field observations. For a future VOC increase of 50% we predict a particle mass increase due to SOA of 19% assuming today's mass contribution of pre-existing aerosol and oxidant levels.


2005 ◽  
Vol 5 (7) ◽  
pp. 1773-1785 ◽  
Author(s):  
V. Fiedler ◽  
M. Dal Maso ◽  
M. Boy ◽  
H. Aufmhoff ◽  
J. Hoffmann ◽  
...  

Abstract. Atmospheric gaseous sulphuric acid was measured and its influence on particle formation and growth was investigated building on aerosol data. The measurements were part of the EU-project QUEST and took place at two different measurement sites in Northern and Central Europe (Hyytiälä, Finland, March-April 2003 and Heidelberg, Germany, March-April 2004). From a comprehensive data set including sulphuric acid, particle number size distributions and meteorological data, particle growth rates, particle formation rates and source rates of condensable vapors were inferred. Growth rates were determined in two different ways, from particle size distributions as well as from a so-called timeshift analysis. Moreover, correlations between sulphuric acid and particle number concentration between 3 and 6 nm were examined and the influence of air masses of different origin was investigated. Measured maximum concentrations of sulphuric acid were in the range from 1x106 to 16x106cm-3. The gaseous sulphuric acid lifetime with respect to condensation on aerosol particles ranged from 2 to 33min in Hyytiälä and from 0.5 to 8 min in Heidelberg. Most calculated values (growth rates, formation rates, vapor source rates) were considerably higher in Central Europe (Heidelberg), due to the more polluted air and higher preexistent aerosol concentrations. Close correlations between H2SO4 and nucleation mode particles (size range: 3-6 nm) were found on most days at both sites. The percentage contribution of sulphuric acid to particle growth was below 10% at both places and to initial growth below 20%. An air mass analysis indicated that at Heidelberg new particles were formed predominantly in air advected from southwesterly directions.


2011 ◽  
Vol 11 (8) ◽  
pp. 3823-3833 ◽  
Author(s):  
H. C. Cheung ◽  
L. Morawska ◽  
Z. D. Ristovski

Abstract. The aim of this study was to characterise the new particle formation events in a subtropical urban environment in the Southern Hemisphere. The study measured the number concentration of particles and its size distribution in Brisbane, Australia during 2009. The variation of particle number concentration and nucleation burst events were characterised as well as the particle growth rate which was first reported in urban environment of Australia. The annual average NUFP, NAitken and NNuc were 9.3×103, 3.7×103 and 5.6×103 cm−3, respectively. Weak seasonal variation in number concentration was observed. Local traffic exhaust emissions were a major contributor of the pollution (NUFP) observed in morning which was dominated by the Aitken mode particles, while particles formed by secondary formation processes contributed to the particle number concentration during afternoon. Overall, 65 nucleation burst events were identified during the study period. Nucleation burst events were classified into two groups, with and without particles growth after the burst of nucleation mode particles observed. The average particle growth rate of the nucleation events was 4.6 nm h−1 (ranged from 1.79–7.78 nm h−1). Case studies of the nucleation burst events were characterised including (i) the nucleation burst with particle growth which is associated with the particle precursor emitted from local traffic exhaust emission, (ii) the nucleation burst without particle growth which is due to the transport of industrial emissions from the coast to Brisbane city or other possible sources with unfavourable conditions which suppressed particle growth and (iii) interplay between the above two cases which demonstrated the impact of the vehicle and industrial emissions on the variation of particle number concentration and its size distribution during the same day.


2012 ◽  
Vol 12 (5) ◽  
pp. 11485-11537 ◽  
Author(s):  
P. Paasonen ◽  
T. Olenius ◽  
O. Kupiainen ◽  
T. Kurtén ◽  
T. Petäjä ◽  
...  

Abstract. Sulphuric acid is a key component in atmospheric new particle formation. However, sulphuric acid alone does not form stable enough clusters to initiate particle formation in atmospheric conditions. Strong bases, such as amines, have been suggested to stabilize sulphuric acid clusters and thus participate in particle formation. We modelled the formation rate of clusters with two sulphuric acid and two amine molecules (JA2B2) at varying atmospherically relevant conditions with respect to concentrations of sulphuric acid ([H2SO4]), dimethylamine ([DMA]) and trimethylamine ([TMA]), temperature and relative humidity (RH). The modelled formation rates JA2B2 were functions of sulphuric acid concentration with close to quadratic dependence, which is in good agreement with atmospheric observations of the connection between the particle formation rate and sulphuric acid concentration. The coefficients KA2B2 connecting the cluster formation rate and sulphuric acid concentrations as JA2B2 = KA2B2[H2SO4]2 turned out to depend also on amine concentrations, temperature and relative humidity. We tested how the model results change if the clusters with two sulphuric acid and two amine molecules are assumed to act as seeds for heterogeneous nucleation of organic vapours (other than amines) with higher atmospheric concentrations than sulphuric acid. We also compared the modelled coefficients KA2B2 with the corresponding coefficients calculated from the atmospheric observations (Kobs) from environments with varying temperatures and levels of anthropogenic influence. By taking into account the modelled behaviour of JA2B2 as a function of [H2SO4], temperature and RH, the atmospheric particle formation rate was reproduced more closely than with the traditional semi-empirical formulae based on sulphuric acid concentration only. The formation rates of clusters with two sulphuric acid and two amine molecules with different amine compositions (DMA or TMA or one of both) had different responses to varying meteorological conditions and concentrations of vapours participating to particle formation. The observed inverse proportionality of the coefficient Kobs with RH and temperature agreed best with the modelled coefficient KA2B2 related to formation of a~cluster with two H2SO4 and one or two TMA molecules, assuming that these clusters can grow in collisions with abundant organic vapour molecules. In case this assumption is valid, our results suggest that the formation rate of clusters with at least two of both sulphuric acid and amine molecules might be the rate-limiting step for atmospheric particle formation. More generally, our analysis elucidates the sensitivity of the atmospheric particle formation rate to meteorological variables and concentrations of vapours participating in particle formation (also other than H2SO4).


2009 ◽  
Vol 9 (1) ◽  
pp. 3041-3094 ◽  
Author(s):  
Th. F. Mentel ◽  
J. Wildt ◽  
A. Kiendler-Scharr ◽  
E. Kleist ◽  
R. Tillmann ◽  
...  

Abstract. By emission of volatile organic compounds (VOC) which on oxidation form secondary organic aerosols (SOA) the vegetation is coupled to atmosphere and climate. New particle formation from tree emissions was investigated in a new setup: a plant chamber coupled to a reaction chamber for oxidizing the plant emissions and for forming SOA. The boreal tree species birch, pine, and spruce were studied and α-pinene was used as reference compound. Under the experimental conditions OH radicals were essential for inducing new particle formation, although O3 (≤80 ppb) was always present and a part of the monoterpenes and the sesquiterpenes reacted already with ozone before OH was generated. Formation rates of 3 nm particles were linearly related to the carbon mixing ratios of the VOC, as were the maximum observed volume and the condensational growth rates. The threshold of new particle formation was lower for the tree emissions than for α-pinene. It was lowest for birch with the largest fraction of oxygenated VOC (OVOC) suggesting that OVOC may play a pivotal role in new particle formation. Incremental mass yields were ≈5% for pine, spruce and α-pinene, and ≈10% for birch. α-Pinene was a good model compound to describe the yield and the growth of SOA particles from coniferous emissions. The mass fractional yields agreed well with observations for boreal forests. Despite our somewhat enhanced VOC and OH concentrations our results may thus be up-scaled to eco-system level. Using the mass fractional yields observed for the tree emissions and weighting them with the abundance of the respective trees in boreal forests we calculate SOA mass concentrations which agree within 6% with field observations. For a future VOC increase of 50% we predict a particle mass increase due to SOA of 19% assuming today's mass contribution of pre-existing aerosol.


Sign in / Sign up

Export Citation Format

Share Document