scholarly journals Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols

2010 ◽  
Vol 10 (19) ◽  
pp. 9631-9646 ◽  
Author(s):  
C. Liousse ◽  
B. Guillaume ◽  
J. M. Grégoire ◽  
M. Mallet ◽  
C. Galy ◽  
...  

Abstract. African biomass burning emission inventories for gaseous and particulate species have been constructed at a resolution of 1 km by 1km with daily coverage for the 2000–2007 period. These inventories are higher than the GFED2 inventories, which are currently widely in use. Evaluation specifically focusing on combustion aerosol has been carried out with the ORISAM-TM4 global chemistry transport model which includes a detailed aerosol module. This paper compares modeled results with measurements of surface BC concentrations and scattering coefficients from the AMMA Enhanced Observations period, aerosol optical depths and single scattering albedo from AERONET sunphotometers, LIDAR vertical distributions of extinction coefficients as well as satellite data. Aerosol seasonal and interannual evolutions over the 2004–2007 period observed at regional scale and more specifically at the Djougou (Benin) and Banizoumbou (Niger) AMMA/IDAF sites are well reproduced by our global model, indicating that our biomass burning emission inventory appears reasonable.

2010 ◽  
Vol 10 (3) ◽  
pp. 7347-7382 ◽  
Author(s):  
C. Liousse ◽  
B. Guillaume ◽  
J. M. Grégoire ◽  
M. Mallet ◽  
C. Galy ◽  
...  

Abstract. African biomass burning emission inventories for gases and particles (AMMABB) have been constructed at a resolution of 1 km by 1 km with daily coverage for the 2000–2007 period. They have been evaluated using the ORISAM-TM4 global chemistry transport model, which includes a detailed aerosol module. This paper discussed comparisons between modelled results and new AMMA measurements for surface BC and OC concentrations and scattering coefficients, aerosol optical depths and single scattering albedo from sunphotometer and satellite data. Major aerosol seasonal and interannual evolution over the period 2004–2007 observed at Djougou (Benin) and Banizoumbou (Niger) AMMA/IDAF sites are well reproduced by our global model, showing the importance of using accurate biomass burning emissions. It is the first time to our knowledge that a global model treating core/shell mixing for optical calculations reproduces aerosol optical depths (AOD) values of the same order as satellite and AERONET data. Comparison of simulated and measured concentrations for different class sizes simulated by the model give information on possible refinements of the emissions, according to the particulate size fraction, which have an impact on aerosol optical properties.


2014 ◽  
Vol 14 (2) ◽  
pp. 3099-3168 ◽  
Author(s):  
I. B. Konovalov ◽  
E. V. Berezin ◽  
P. Ciais ◽  
G. Broquet ◽  
M. Beekmann ◽  
...  

Abstract. A method to constrain carbon dioxide (CO2) emissions from open biomass burning by using satellite observations of co-emitted species and a chemistry-transport model (CTM) is proposed and applied to the case of wildfires in Siberia. CO2 emissions are assessed by means of an emission model assuming a direct relationship between the biomass burning rate (BBR) and the Fire Radiative Power (FRP) derived from the MODIS measurements. The key features of the method are (1) estimating the FRP-to-BBR conversion factors (α) for different vegetative land cover types by assimilating the satellite observations of co-emitted species into the CTM, (2) optimal combination of the estimates of α derived independently from satellite observations of different species (CO and aerosol in this study), and (3) estimation of the diurnal cycle of the fire emissions directly from the FRP measurements. Values of α for forest and grassland fires in Siberia and their uncertainties are estimated by using the IASI carbon monoxide (CO) retrievals and the MODIS aerosol optical depth (AOD) measurements combined with outputs from the CHIMERE mesoscale chemistry transport model. The constrained CO emissions are validated through comparison of the respective simulations with the independent data of ground based CO measurements at the ZOTTO site. Using our optimal regional-scale estimates of the conversion factors (which are found to be in agreement with the earlier published estimates obtained from local measurements of experimental fires), the total CO2 emissions from wildfires in Siberia in 2012 are estimated to be in the range from 262 to 477 Tg C, with the optimal (maximum likelihood) value of 354 Tg C. Sensitivity test cases featuring different assumptions regarding the injection height and diurnal variations of emissions indicate that the derived estimates of the total CO2 emissions in Siberia are robust with respect to the modelling options (the different estimates vary within less than 10% of their magnitude). The obtained CO2 emission estimates for several years are compared with the independent estimates provided by the GFED3.1 and GFASv1.0 global emission inventories. It is found that our "top-down" estimates for the total annual biomass burning CO2 emissions in the period from 2007 to 2011 in Siberia are by factors of 2.3 and 1.7 larger than the respective bottom-up estimates; these discrepancies cannot be fully explained by uncertainties in our estimates. There are also considerable differences in the spatial distribution of the different emission estimates; some of those differences have a systematic character and require further analysis.


2014 ◽  
Vol 14 (19) ◽  
pp. 10383-10410 ◽  
Author(s):  
I. B. Konovalov ◽  
E. V. Berezin ◽  
P. Ciais ◽  
G. Broquet ◽  
M. Beekmann ◽  
...  

Abstract. A method to constrain carbon dioxide (CO2) emissions from open biomass burning by using satellite observations of co-emitted species and a chemistry-transport model (CTM) is proposed and applied to the case of wildfires in Siberia. CO2 emissions are assessed by means of an emission model assuming a direct relationship between the biomass burning rate (BBR) and the fire radiative power (FRP) derived from MODIS measurements. The key features of the method are (1) estimating the FRP-to-BBR conversion factors (α) for different vegetative land cover types by assimilating the satellite observations of co-emitted species into the CTM, (2) optimal combination of the estimates of α derived independently from satellite observations of different species (CO and aerosol in this study), and (3) estimation of the diurnal cycle of the fire emissions directly from the FRP measurements. Values of α for forest and grassland fires in Siberia and their uncertainties are estimated using the Infrared Atmospheric Sounding Interferometer (IASI) carbon monoxide (CO) retrievals and MODIS aerosol optical depth (AOD) measurements combined with outputs from the CHIMERE mesoscale chemistry-transport model. The constrained CO emissions are validated through comparison of the respective simulations with independent data of ground-based CO measurements at the ZOTTO site. Using our optimal regional-scale estimates of the conversion factors (which are found to be in agreement with earlier published estimates obtained from local measurements of experimental fires), the total CO2 emissions from wildfires in Siberia in 2012 are estimated to be in the range from 280 to 550 Tg C, with the optimal (maximum likelihood) value of 392 Tg C. Sensitivity test cases featuring different assumptions regarding the injection height and diurnal variations of emissions indicate that the derived estimates of the total CO2 emissions in Siberia are robust with respect to the modeling options (the different estimates vary within less than 15% of their magnitude). The CO2 emission estimates obtained for several years are compared with independent estimates provided by the GFED3.1 and GFASv1.0 global emission inventories. It is found that our "top-down" estimates for the total annual biomass burning CO2 emissions in the period from 2007 to 2011 in Siberia are by factors of 2.5 and 1.8 larger than the respective bottom-up estimates; these discrepancies cannot be fully explained by uncertainties in our estimates. There are also considerable differences in the spatial distribution of the different emission estimates; some of those differences have a systematic character and require further analysis.


2011 ◽  
Vol 4 (4) ◽  
pp. 901-917 ◽  
Author(s):  
A. Hodzic ◽  
J. L. Jimenez

Abstract. A simplified parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is tested and optimized in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA mass and hygroscopicity in global and climate models. A regional chemistry-transport model is used as the testbed for the parameterization, which is compared against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment. The empirical parameterization is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass. The approach consists in emitting an organic gas as lumped SOA precursor surrogate proportional to anthropogenic or biomass burning CO emissions according to the observed ratio between SOA and CO in aged air, and reacting this surrogate with OH into a single non-volatile species that condenses to form SOA. An emission factor of 0.08 g of the lumped SOA precursor per g of CO and a rate constant with OH of 1.25 × 10−11 cm3 molecule−1 s−1 reproduce the observed average SOA mass within 30 % in the urban area and downwind. When a 2.5 times slower rate is used (5 × 10−12 cm3 molecule−1 s−1) the predicted SOA amount and temporal evolution is nearly identical to the results obtained with SOA formation from semi-volatile and intermediate volatility primary organic vapors according to the Robinson et al. (2007) formulation. Our simplified method has the advantage of being much less computationally expensive than Robinson-type methods, and can be used in regions where the emissions of SOA precursors are not yet available. As the aged SOA/ΔCO ratios are rather consistent globally for anthropogenic pollution, this parameterization could be reasonably tested in and applied to other regions. The evolution of oxygen-to-carbon ratio was also empirically modeled and the predicted levels were found to be in reasonable agreement with observations. The potential enhancement of biogenic SOA by anthropogenic pollution, which has been suggested to play a major role in global SOA formation, is also tested using two simple parameterizations. Our results suggest that the pollution enhancement of biogenic SOA could provide additional SOA, but does not however explain the concentrations or the spatial and temporal variations of measured SOA mass in the vicinity of Mexico City, which appears to be controlled by anthropogenic sources. The contribution of the biomass burning to the predicted SOA is less than 10% during the studied period.


2008 ◽  
Vol 8 (5) ◽  
pp. 16981-17036 ◽  
Author(s):  
T. Stavrakou ◽  
J.-F. Müller ◽  
I. De Smedt ◽  
M. Van Roozendael ◽  
G. R. van der Werf ◽  
...  

Abstract. A new one-decade dataset of formaldehyde (HCHO) columns retrieved from GOME and SCIAMACHY is compared with HCHO columns simulated by an updated version of the IMAGES global chemical transport model. This model version includes an optimized chemical scheme with respect to HCHO production, where the short-term and final HCHO yields from pyrogenically emitted non-methane volatile organic compounds (NMVOCs) are estimated from the Master Chemical Mechanism (MCM) and an explicit speciation profile of pyrogenic emissions. The model is driven by the Global Fire Emissions Database (GFED) version 1 or 2 for biomass burning, whereas biogenic emissions are provided either by the Global Emissions Inventory Activity (GEIA), or by a newly developed inventory based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN) algorithms driven by meteorological fields from the European Centre for Medium-Range Weather Forecasts (ECMWF). The comparisons focus on tropical ecosystems, North America and China, which experience strong biogenic and biomass burning NMVOC emissions reflected in the enhanced measured HCHO columns. These comparisons aim at testing the ability of the model to reproduce the observed features of the HCHO distribution on the global scale and at providing a first assessment of the performance of the current emission inventories. The high correlation coefficients (r>0.8) between the observed and simulated columns over most regions indicate a very good consistency between the model, the implemented inventories and the HCHO dataset. The use of the MEGAN-ECMWF inventory improves the model/data agreement in almost all regions, but biases persist over parts of Africa and the Northern Australia. Although neither GFED version is consistent with the data over all regions, a better match is achieved over Indonesia and Southern Africa when GFEDv2 is used, but GFEDv1 succeeds better in getting the correct seasonal patterns and intensities of the fire episodes over the Amazon basin, as reflected by the higher correlations calculated in this region.


2015 ◽  
Vol 8 (4) ◽  
pp. 3593-3651 ◽  
Author(s):  
J. Guth ◽  
B. Josse ◽  
V. Marécal ◽  
M. Joly

Abstract. In this study we develop a Secondary Inorganic Aerosol (SIA) module for the chemistry transport model MOCAGE developed at CNRM. Based on the thermodynamic equilibrium module ISORROPIA II, the new version of the model is evaluated both at the global scale and at the regional scale. The results show high concentrations of secondary inorganic aerosols in the most polluted regions being Europe, Asia and the eastern part of North America. Asia shows higher sulfate concentrations than other regions thanks to emissions reduction in Europe and North America. Using two simulations, one with and the other without secondary inorganic aerosol formation, the model global outputs are compared to previous studies, to MODIS AOD retrievals, and also to in situ measurements from the HTAP database. The model shows a better agreement in all geographical regions with MODIS AOD retrievals when introducing SIA. It also provides a good statistical agreement with in situ measurements of secondary inorganic aerosol composition: sulfate, nitrate and ammonium. In addition, the simulation with SIA gives generally a better agreement for secondary inorganic aerosols precursors (nitric acid, sulfur dioxide, ammonia) in particular with a reduction of the Modified Normalised Mean Bias (MNMB). At the regional scale, over Europe, the model simulation with SIA are compared to the in situ measurements from the EMEP database and shows a good agreement with secondary inorganic aerosol composition. The results at the regional scale are consistent with those obtained with the global simulations. The AIRBASE database was used to compare the model to regulated air quality pollutants being particulate matter, ozone and nitrogen dioxide concentrations. The introduction of the SIA in MOCAGE provides a reduction of the PM2.5 MNMB of 0.44 on a yearly basis and even 0.52 on a three spring months period (March, April, May) when SIA are maximum.


2007 ◽  
Vol 7 (24) ◽  
pp. 6119-6129 ◽  
Author(s):  
G. Dufour ◽  
S. Szopa ◽  
D. A. Hauglustaine ◽  
C. D. Boone ◽  
C. P. Rinsland ◽  
...  

Abstract. The distribution and budget of oxygenated organic compounds in the atmosphere and their impact on tropospheric chemistry are still poorly constrained. Near-global space-borne measurements of seasonally resolved upper tropospheric profiles of methanol (CH3OH) by the ACE Fourier transform spectrometer provide a unique opportunity to evaluate our understanding of this important oxygenated organic species. ACE-FTS observations from March 2004 to August 2005 period are presented. These observations reveal the pervasive imprint of surface sources on upper tropospheric methanol: mixing ratios observed in the mid and high latitudes of the Northern Hemisphere reflect the seasonal cycle of the biogenic emissions whereas the methanol cycle observed in the southern tropics is highly influenced by biomass burning emissions. The comparison with distributions simulated by the state-of-the-art global chemistry transport model, LMDz-INCA, suggests that: (i) the background methanol (high southern latitudes) is correctly represented by the model considering the measurement uncertainties; (ii) the current emissions from the continental biosphere are underestimated during spring and summer in the Northern Hemisphere leading to an underestimation of modelled upper tropospheric methanol; (iii) the seasonal variation of upper tropospheric methanol is shifted to the fall in the model suggesting either an insufficient destruction of CH3OH (due to too weak chemistry and/or deposition) in fall and winter months or an unfaithful representation of transport; (iv) the impact of tropical biomass burning emissions on upper tropospheric methanol is rather well reproduced by the model. This study illustrates the potential of these first global profile observations of oxygenated compounds in the upper troposphere to improve our understanding of their global distribution, fate and budget.


2016 ◽  
Vol 16 (23) ◽  
pp. 15185-15197 ◽  
Author(s):  
James R. Laing ◽  
Daniel A. Jaffe ◽  
Jonathan R. Hee

Abstract. The summer of 2015 was an extreme forest fire year in the Pacific Northwest. Our sample site at the Mt. Bachelor Observatory (MBO, 2.7 km a.s.l.) in central Oregon observed biomass burning (BB) events more than 50 % of the time during August. In this paper we characterize the aerosol physical and optical properties of 19 aged BB events during August 2015. Six of the 19 events were influenced by Siberian fires originating near Lake Baikal that were transported to MBO over 4–10 days. The remainder of the events resulted from wildfires in Northern California and Southwestern Oregon with transport times to MBO ranging from 3 to 35 h. Fine particulate matter (PM1), carbon monoxide (CO), aerosol light scattering coefficients (σscat), aerosol light absorption coefficients (σabs), and aerosol number size distributions were measured throughout the campaign. We found that the Siberian events had a significantly higher Δσabs∕ΔCO enhancement ratio, higher mass absorption efficiency (MAE; Δσabs∕ΔPM1), lower single scattering albedo (ω), and lower absorption Ångström exponent (AAE) when compared with the regional events. We suggest that the observed Siberian events represent that portion of the plume that has hotter flaming fire conditions and thus enabled strong pyroconvective lofting and long-range transport to MBO. The Siberian events observed at MBO therefore represent a selected portion of the original plume that would then have preferentially higher black carbon emissions and thus an enhancement in absorption. The lower AAE values in the Siberian events compared to regional events indicate a lack of brown carbon (BrC) production by the Siberian fires or a loss of BrC during transport. We found that mass scattering efficiencies (MSE) for the BB events ranged from 2.50 to 4.76 m2 g−1. We measured aerosol size distributions with a scanning mobility particle sizer (SMPS). Number size distributions ranged from unimodal to bimodal and had geometric mean diameters (Dpm) ranging from 138 to 229 nm and geometric standard deviations (σg) ranging from 1.53 to 1.89. We found MSEs for BB events to be positively correlated with the geometric mean of the aerosol size distributions (R2 = 0.73), which agrees with Mie theory. We did not find any dependence on event size distribution to transport time or fire source location.


2010 ◽  
Vol 10 (5) ◽  
pp. 2491-2506 ◽  
Author(s):  
A. Voulgarakis ◽  
N. H. Savage ◽  
O. Wild ◽  
P. Braesicke ◽  
P. J. Young ◽  
...  

Abstract. We have run a chemistry transport model (CTM) to systematically examine the drivers of interannual variability of tropospheric composition during 1996–2000. This period was characterised by anomalous meteorological conditions associated with the strong El Niño of 1997–1998 and intense wildfires, which produced a large amount of pollution. On a global scale, changing meteorology (winds, temperatures, humidity and clouds) is found to be the most important factor driving interannual variability of NO2 and ozone on the timescales considered. Changes in stratosphere-troposphere exchange, which are largely driven by meteorological variability, are found to play a particularly important role in driving ozone changes. The strong influence of emissions on NO2 and ozone interannual variability is largely confined to areas where intense biomass burning events occur. For CO, interannual variability is almost solely driven by emission changes, while for OH meteorology dominates, with the radiative influence of clouds being a very strong contributor. Through a simple attribution analysis for 1996–2000 we conclude that changing cloudiness drives 25% of the interannual variability of OH over Europe by affecting shortwave radiation. Over Indonesia this figure is as high as 71%. Changes in cloudiness contribute a small but non-negligible amount (up to 6%) to the interannual variability of ozone over Europe and Indonesia. This suggests that future assessments of trends in tropospheric oxidizing capacity should account for interannual variability in cloudiness, a factor neglected in many previous studies.


2021 ◽  
Author(s):  
Juan Cuesta ◽  
Lorenzo Costantino ◽  
Matthias Beekmann ◽  
Guillaume Siour ◽  
Laurent Menut ◽  
...  

Abstract. We present a comprehensive study integrating satellite observations of ozone pollution, in situ measurements and chemistry transport model simulations for quantifying the role of anthropogenic emission reductions during the COVID-19 lockdown in spring 2020 over Europe. Satellite observations are derived from the IASI+GOME2 multispectral synergism, which provides particularly enhanced sensitivity to near-surface ozone pollution. These observations are first analysed in terms of differences between the average on 1–15 April 2020, when the strictest lockdown restrictions took place, and the same period in 2019. They show clear enhancements of near-surface ozone in Central Europe and Northern Italy, and some other hotspots, which are typically characterized by VOC-limited chemical regimes. An overall reduction of ozone is observed elsewhere, where ozone chemistry is limited by the abundance of NOx. The spatial distribution of positive and negative ozone concentration anomalies observed from space is in relatively good quantitative agreement with surface in situ measurements over the continent (a correlation coefficient of 0.55, a root-mean-squared difference of 11 ppb and the same standard deviation and range of variability). An average bias of ∼8 ppb between the two observational datasets is remarked, which can partly be explained by the fact the satellite approach retrieves partial columns of ozone with a peak sensitivity above the surface (near 2 km of altitude). For assessing the impact of the reduction of anthropogenic emissions during the lockdown, we adjust the satellite and in situ surface observations for withdrawing the influence of meteorological conditions in 2020 and 2019. This adjustment is derived from the chemistry transport model simulations using the meteorological fields of each year and identical emission inventories. This observational estimate of the influence of lockdown emission reduction is consistent for both datasets. They both show lockdown-associated ozone enhancements in hotspots over Central Europe and Northern Italy, with a reduced amplitude with respect to the total changes observed between the two years, and an overall reduction elsewhere over Europe and the ocean. Satellite observations additionally highlight the ozone anomalies in the regions remote from in situ sensors, an enhancement over the Mediterranean likely associated with maritime traffic emissions and a marked large-scale reduction of ozone elsewhere over ocean (particularly over the North Sea), in consistency with previous assessments done with ozonesondes measurements in the free troposphere. These observational assessments are compared with model-only estimations, using the CHIMERE chemistry transport model. For analysing the uncertainty of the model estimates, we perform two sets of simulations with different setups, differing in the emission inventories, their modifications to account for changes in anthropogenic activities during the lockdown and the meteorological fields. Whereas a general qualitative consistency of positive and negative ozone anomalies is remarked between all model and observational estimates, significant changes are seen in their amplitudes. Models underestimate the range of variability of the ozone changes by at least a factor 2 with respect to the two observational data sets, both for enhancements and decreases of ozone, while the large-scale ozone decrease is not simulated. With one of the setups, the model simulates ozone enhancements a factor 3 to 6 smaller than with the other configuration. This is partly linked to the emission inventories of ozone precursors (at least a 30 % difference), but mainly to differences in vertical mixing of atmospheric constituents depending on the choice of the meteorological model.


Sign in / Sign up

Export Citation Format

Share Document