scholarly journals Elucidating determinants of aerosol composition through particle-type-based receptor modeling

2011 ◽  
Vol 11 (15) ◽  
pp. 8133-8155 ◽  
Author(s):  
M. L. McGuire ◽  
C.-H. Jeong ◽  
J. G. Slowik ◽  
R. Y.-W. Chang ◽  
J. C. Corbin ◽  
...  

Abstract. An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources was reflected through three factors: two Biomass Burning factors and a highly chemically processed Long Range Transport factor. The Biomass Burning factors were separated by PMF due to differences in chemical processing which were in part elucidated by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique range of temporal variability, enabling the elucidation of the determinants of aerosol chemical composition, including source emissions, chemical processing, and transport, at the Canada-US border. This paper presents the first study to elucidate the coupled influences of these determinants on temporal variability in aerosol chemical composition using single particle-type-based receptor modelling.

2011 ◽  
Vol 11 (3) ◽  
pp. 9831-9885 ◽  
Author(s):  
M. L. McGuire ◽  
C.-H. Jeong ◽  
J. G. Slowik ◽  
R. Y.-W. Chang ◽  
J. C. Corbin ◽  
...  

Abstract. An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in Southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources were reflected through three factors: two biomass burning factors and a highly chemically processed long range transport factor. The biomass burning factors were separated by PMF due to differences in chemical processing which were caused in part by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique range of temporal variability, enabling the elucidation of the determinants of aerosol chemical composition, including source emissions, chemical processing, and transport, at the Canada-US border. This paper presents the first study to characterize the coupled influences of these determinants on temporal variability in aerosol chemical composition using single particle-type-based receptor modelling.


2021 ◽  
Author(s):  
Simone M. Pieber ◽  
Dac-Loc Nguyen ◽  
Hendryk Czech ◽  
Stephan Henne ◽  
Nicolas Bukowiecki ◽  
...  

<p>Open biomass burning (BB) is a globally widespread phenomenon. The fires release pollutants, which are harmful for human and ecosystem health and alter the Earth's radiative balance. Yet, the impact of various types of BB on the global radiative forcing remains poorly constrained concerning greenhouse gas emissions, BB organic aerosol (OA) chemical composition and related light absorbing properties. Fire emissions composition is influenced by multiple factors (e.g., fuel and thereby vegetation-type, fuel moisture, fire temperature, available oxygen). Due to regional variations in these parameters, studies in different world regions are needed. Here we investigate the influence of seasonally recurring BB on trace gas concentration and air quality at the regional Global Atmosphere Watch (GAW) station Pha Din (PDI) in rural Northwestern Vietnam. PDI is located in a sparsely populated area on the top of a hill (1466 m a.s.l.) and is well suited to study the large-scale fires on the Indochinese Peninsula, whose pollution plumes are frequently transported towards the site [1]. We present continuous trace gas observations of CO<sub>2</sub>, CH<sub>4</sub>, CO, and O<sub>3</sub> conducted at PDI since 2014 and interpret the data with atmospheric transport simulations. Annually recurrent large scale BB leads to hourly time-scale peaks CO mixing ratios at PDI of 1000 to 1500 ppb around every April since the start of data collection in 2014. We complement this analysis with carbonaceous PM<sub>2.5 </sub>chemical composition analyzed during an intensive campaign in March-April 2015. This includes measurements of elemental and organic carbon (EC/OC) and more than 50 organic markers, such as sugars, PAHs, fatty acids and nitro-aromatics [2]. For the intensive campaign, we linked CO, CO<sub>2</sub>, CH<sub>4</sub> and O<sub>3</sub> mixing ratios to a statistical classification of BB events, which is based on OA composition. We found increased CO and O<sub>3</sub> levels during medium and high BB influence during the intensive campaign. A backward trajectory analysis confirmed different source regions for the identified periods based on the OA cluster. Typically, cleaner air masses arrived from northeast, i.e., mainland China and Yellow sea during the intensive campaign. The more polluted periods were characterized by trajectories from southwest, with more continental recirculation of the medium cluster, and more westerly advection for the high cluster. These findings highlight that BB activities in Northern Southeast Asia significantly enhances the regional OA loading, chemical PM<sub>2.5 </sub>composition and the trace gases in northwestern Vietnam. The presented analysis adds valuable data on air quality in a region of scarce data availability.</p><p> </p><p><strong>REFERENCES</strong></p><p>[1] Bukowiecki, N. et al. Effect of Large-scale Biomass Burning on Aerosol Optical Properties at the GAW Regional Station Pha Din, Vietnam. AAQR. 19, 1172–1187 (2019).</p><p>[2] Nguyen, D. L, et al. Carbonaceous aerosol composition in air masses influenced by large-scale biomass burning: a case-study in Northwestern Vietnam. ACPD., https://doi.org/10.5194/acp-2020-1027, in review, 2020.</p>


Author(s):  
Milena Ponczek ◽  
Marco Aurélio de Menezes Franco ◽  
Samara Carbone ◽  
Luciana Varanda Rizzo ◽  
Djacinto Aparecido Monteiro dos Santos ◽  
...  

Biomass burning emissions in Amazonia changes the atmospheric composition and aerosol properties during the dry season. We investigated fine-mode aerosol chemical composition and optical properties at an intensive field experiment...


2015 ◽  
Vol 110 ◽  
pp. 36-44 ◽  
Author(s):  
Jun Tao ◽  
Leiming Zhang ◽  
Jian Gao ◽  
Han Wang ◽  
Faihe Chai ◽  
...  

2010 ◽  
Vol 408 (12) ◽  
pp. 2482-2491 ◽  
Author(s):  
C. Theodosi ◽  
U. Im ◽  
A. Bougiatioti ◽  
P. Zarmpas ◽  
O. Yenigun ◽  
...  

2016 ◽  
Vol 16 (2) ◽  
pp. 1139-1160 ◽  
Author(s):  
L. Xu ◽  
L. R. Williams ◽  
D. E. Young ◽  
J. D. Allan ◽  
H. Coe ◽  
...  

Abstract. The composition of PM1 (particulate matter with diameter less than 1 µm) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer) only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS) at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have undergone similar chemical processing as rBC in the atmosphere. Although the atomic O : C ratio of OOA is substantially larger than that of solid fuel OA and hydrocarbon-like OA, these three factors have similar volatility, which is inferred from the change in mass concentration after heating at 120 °C. Finally, we discuss the relationship between the mass fraction remaining (MFR) of OA after heating in the TD and atomic O : C of OA and find that particles with a wide range of O : C could have similar MFR after heating. This analysis emphasizes the importance of understanding the distribution of volatility and O : C in bulk OA.


2013 ◽  
Vol 13 (4) ◽  
pp. 9355-9399 ◽  
Author(s):  
F. Mei ◽  
A. Setyan ◽  
Q. Zhang ◽  
J. Wang

Abstract. During the Carbonaceous Aerosols and Radiative Effects Study (CARES), activation fraction of size-resolved aerosol particles and aerosol chemical composition were characterized at the T1 site (~60 km downwind of Sacramento, California) from 10 June to 28 June 2010. The hygroscopicity of CCN-active particles (κCCN) with diameter from 100 to 171 nm, derived from the size-resolved activated fraction, varied from 0.10 to 0.21, with an average of 0.15, which was substantially lower than that proposed for continental sites in earlier studies. The low κCCN value was due to the high organic volume fraction, averaged over 80% at the T1 site. The derived κCCN exhibited little diurnal variation, consistent with the relatively constant organic volume fraction observed. At any time, over 90% of the size selected particles with diameter between 100 and 171 nm were CCN active, suggesting most particles within this size range were aged background particles. Due to the large organic volume fraction, organic hygroscopicity (κorg) strongly impacted particle hygroscopicity and therefore calculated CCN concentration. For vast majority of the cases, an increase of κorg from 0.03 to 0.18, which are within the typical range, doubled the calculated CCN concentration. Organic hygroscopicity was derived from κCCN and aerosol chemical composition, and its variations with the fraction of total organic mass spectral signal at m/z 44 (f44) and O : C were compared to results from previous studies. Overall, the relationships between κorg and f44 are quite consistent for organic aerosol (OA) observed during field studies and those formed in smog chamber. Compared to the relationship between κorg and f44, the relationship between κorg and O : C exhibits more significant differences among different studies, suggesting κorg may be better parameterized using f44. A least squares fit yielded κorg = 2.04 (± 0.07) × f44 − 0.11 (± 0.01) with the Pearson R2 value of 0.71. One possible explanation for the stronger correlation between κorg and f44 is that the m/z 44 signal (mostly contributed by the CO2+ ion) is more closely related to organic acids, which may dominate the overall κorg due to their relatively high water solubility and hygroscopicity.


2013 ◽  
Vol 13 (10) ◽  
pp. 25969-25999 ◽  
Author(s):  
A. Bougiatioti ◽  
I. Stavroulas ◽  
E. Kostenidou ◽  
P. Zarmpas ◽  
C. Theodosi ◽  
...  

Abstract. The aerosol chemical composition in air masses affected by wildfires from the Greek islands of Chios, Euboea and Andros, the Dalmatian Coast and Sicily, during late summer of 2012 was characterized at the remote background site of Finokalia, Crete. Air masses were transported several hundreds of kilometers, arriving at the measurement station after approximately half a day of transport, mostly during night-time. The chemical composition of the particulate matter was studied by different high temporal resolution instruments, including an Aerosol Chemical Speciation Monitor (ACSM) and a seven-wavelength aethalometer. Despite the large distance from emission and long atmospheric processing, a clear biomass burning organic aerosol (BBOA) profile containing characteristic markers is derived from BC measurements and Positive Matrix Factorization (PMF) analysis of the ACSM mass spectra. The ratio of fresh to aged BBOA decreases with increasing atmospheric processing time and BBOA components appear to be converted to oxygenated organic aerosol (OOA). Given that the smoke was mainly transported overnight, it appears that the processing can take place in the dark. These results show that a significant fraction of the BBOA loses its characteristic AMS signature and is transformed to OOA in less than a day. This implies that biomass burning can contribute almost half of the organic aerosol mass in the area during summertime.


2021 ◽  
Vol 21 (4) ◽  
pp. 3181-3192
Author(s):  
Linlin Liang ◽  
Guenter Engling ◽  
Chang Liu ◽  
Wanyun Xu ◽  
Xuyan Liu ◽  
...  

Abstract. Biomass burning activities are ubiquitous in China, especially in northern China, where there is a large rural population and winter heating custom. Biomass burning tracers (i.e., levoglucosan, mannosan and potassium (K+)), as well as other chemical components, were quantified at a rural site (Gucheng, GC) in northern China from 15 October to 30 November, during a transition heating season, when the field burning of agricultural residue was becoming intense. The measured daily average concentrations of levoglucosan, mannosan and K+ in PM2.5 (particulate matter with aerodynamic diameters less than 2.5 µm) during this study were 0.79 ± 0.75, 0.03 ± 0.03 and 1.52 ± 0.62 µg m−3, respectively. Carbonaceous components and biomass burning tracers showed higher levels during nighttime than daytime, while secondary inorganic ions were enhanced during daytime. An episode with high levels of biomass burning tracers was encountered at the end of October 2016, with high levoglucosan at 4.37 µg m−3. Based on the comparison of chemical components during different biomass burning pollution periods, it appeared that biomass combustion can obviously elevate carbonaceous component levels, whereas there was essentially no effect on secondary inorganic aerosols in the ambient air. Moreover, the levoglucosan / mannosan ratios during different biomass burning pollution periods remained at high values (in the range of 18.3–24.9); however, the levoglucosan / K+ ratio was significantly elevated during the intensive biomass burning pollution period (1.67) when air temperatures were decreasing, which was substantially higher than in other biomass burning periods (averaged at 0.47).


Sign in / Sign up

Export Citation Format

Share Document