scholarly journals Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NO<sub>x</sub> and CO<sub>2</sub> and their impacts

2013 ◽  
Vol 13 (7) ◽  
pp. 3661-3677 ◽  
Author(s):  
J. Brioude ◽  
W. M. Angevine ◽  
R. Ahmadov ◽  
S.-W. Kim ◽  
S. Evan ◽  
...  

Abstract. We present top-down estimates of anthropogenic CO, NOx and CO2 surface fluxes at mesoscale using a Lagrangian model in combination with three different WRF model configurations, driven by data from aircraft flights during the CALNEX campaign in southern California in May–June 2010. The US EPA National Emission Inventory 2005 (NEI 2005) was the prior in the CO and NOx inversion calculations. The flux ratio inversion method, based on linear relationships between chemical species, was used to calculate the CO2 inventory without prior knowledge of CO2 surface fluxes. The inversion was applied to each flight to estimate the variability of single-flight-based flux estimates. In Los Angeles (LA) County, the uncertainties on CO and NOx fluxes were 10% and 15%, respectively. Compared with NEI 2005, the CO posterior emissions were lower by 43% in LA County and by 37% in the South Coast Air Basin (SoCAB). NOx posterior emissions were lower by 32% in LA County and by 27% in the SoCAB. NOx posterior emissions were 40% lower on weekends relative to weekdays. The CO2 posterior estimates were 183 Tg yr−1 in SoCAB. A flight during ITCT (Intercontinental Transport and Chemical Transformation) in 2002 was used to estimate emissions in the LA Basin in 2002. From 2002 to 2010, the CO and NOx posterior emissions decreased by 41% and 37%, respectively, in agreement with previous studies. Over the same time period, CO2 emissions increased by 10% in LA County but decreased by 4% in the SoCAB, a statistically insignificant change. Overall, the posterior estimates were in good agreement with the California Air Resources Board (CARB) inventory, with differences of 15% or less. However, the posterior spatial distribution in the basin was significantly different from CARB for NOx emissions. WRF-Chem mesoscale chemical-transport model simulations allowed an evaluation of differences in chemistry using different inventory assumptions, including NEI 2005, a gridded CARB inventory and the posterior inventories derived in this study. The biases in WRF-Chem ozone were reduced and correlations were increased using the posterior from this study compared with simulations with the two bottom-up inventories, suggesting that improving the spatial distribution of ozone precursor surface emissions is also important in mesoscale chemistry simulations.

2012 ◽  
Vol 12 (12) ◽  
pp. 31439-31481 ◽  
Author(s):  
J. Brioude ◽  
W. M. Angevine ◽  
R. Ahmadov ◽  
S.-W. Kim ◽  
S. Evan ◽  
...  

Abstract. We present top-down estimates of anthropogenic CO, NOx and CO2 surface fluxes at mesoscale using a Lagrangian model in combination with three different WRF model configurations, driven by data from aircraft flights during the CALNEX campaign in southern California in May–June 2010. The US EPA National Emission Inventory 2005 (NEI 2005) was the prior in the CO and NOx inversion calculations. The flux ratio inversion method, based on linear relationships between chemical species, was used to calculate the CO2 inventory without prior knowledge of CO2 surface fluxes. The inversion was applied to each flight to estimate the variability of single-flight-based flux estimates. In Los Angeles (LA) County, the uncertainties on CO and NOx fluxes were 10% and 15%, respectively. Compared with NEI 2005, the CO posterior emissions were lower by 43% ± 6% in LA County and by 37% ± 10% in the South Coast Air Basin (SoCAB). NOx posterior emissions were lower by 32% ± 10% in LA County and by 27% ± 15% in the SoCAB. NOx posterior emissions were 40% lower on weekends relative to weekdays. The CO2 posterior estimates were 183 ± 18 Tg yr−1 in SoCAB. A flight during ITCT in 2002 was used to estimate emissions in the LA Basin in 2002. From 2002 to 2010, the CO and NOx posterior emissions decreased by 41% and 37%, respectively, in agreement with previous studies. Over the same time period, CO2 emissions increased by 10% ± 14% in LA County but decreased by 4% ± 10% in the SoCAB, a statistically insignificant change. Overall, the posterior estimates were in good agreement with the California Air Resources Board (CARB) inventory, with differences of 15% or less. However, the posterior spatial distribution in the basin was significantly different from CARB for NOx emissions. WRF-Chem mesoscale chemical-transport model simulations allowed an evaluation of differences in chemistry using different inventory assumptions, including NEI 2005, CARB 2010 and the posterior inventories derived in this study. The biases in WRF-Chem ozone were reduced and correlations were increased using the posterior from this study compared with simulations with the two bottom-up inventories, showing that improving the spatial distribution of ozone precursor surface emissions is also important in mesoscale chemistry forecasts.


2020 ◽  
Author(s):  
Yuanhong Zhao ◽  
Marielle Saunois ◽  
Philippe Bousquet ◽  
Xin Lin ◽  
Antoine Berchet ◽  
...  

Abstract. The hydroxyl radical (OH), which is the dominant sink of methane (CH4), plays a key role to close the global methane budget. Previous research that assessed the impact of OH changes on the CH4 budget mostly relied on box modeling inversions with a very simplified atmospheric transport and no representation of the heterogeneous spatial distribution of OH radicals. Here using a variational Bayesian inversion framework and a 3D chemical transport model, LMDz, combined with 10 different OH fields derived from chemistry-climate models (CCMI experiment), we evaluate the influence of OH burden, spatial distribution, and temporal variations on the global CH4 budget. The global tropospheric mean CH4-reaction-weighted [OH] ([OH]GM-CH4) ranges 10.3–16.3 × 105 molec cm−3 across 10 OH fields during the early 2000s, resulting in inversion-based global CH4 emissions between 518 and 757 Tg yr−1. The uncertainties in CH4 inversions induced by the different OH fields are comparable to, or even larger than the uncertainty typically given by bottom-up and top-down estimates. Based on the LMDz inversions, we estimate that a 1 %-increase in OH burden leads to an increase of 4 Tg yr−1 in the estimate of global methane emissions, which is about 25 % smaller than what is estimated by box-models. The uncertainties in emissions induced by OH are largest over South America, corresponding to large inter-model differences of [OH] in this region. From the early to the late 2000s, the optimized CH4 emissions increased by 21.9 ± 5.7 Tg yr−1 (16.6–30.0 Tg yr−1), of which ~ 25 % (on average) is contributed by −0.5 to +1.8 % increase in OH burden. If the CCMI models represent the OH trend properly over the 2000s, our results show that a higher increasing trend of CH4 emissions is needed to match the CH4 observations compared to the CH4 emission trend derived using constant OH. This study strengthens the importance to reach a better representation of OH burden and of OH spatial and temporal distributions to reduce the uncertainties on the global CH4 budget.


2009 ◽  
Vol 9 (19) ◽  
pp. 7313-7323 ◽  
Author(s):  
H. Wang ◽  
D. J. Jacob ◽  
M. Kopacz ◽  
D. B. A. Jones ◽  
P. Suntharalingam ◽  
...  

Abstract. Inverse modeling of CO2 satellite observations to better quantify carbon surface fluxes requires a chemical transport model (CTM) to relate the fluxes to the observed column concentrations. CTM transport error is a major source of uncertainty. We show that its effect can be reduced by using CO satellite observations as additional constraint in a joint CO2-CO inversion. CO is measured from space with high precision, is strongly correlated with CO2, and is more sensitive than CO2 to CTM transport errors on synoptic and smaller scales. Exploiting this constraint requires statistics for the CTM transport error correlation between CO2 and CO, which is significantly different from the correlation between the concentrations themselves. We estimate the error correlation globally and for different seasons by a paired-model method (comparing GEOS-Chem CTM simulations of CO2 and CO columns using different assimilated meteorological data sets for the same meteorological year) and a paired-forecast method (comparing 48- vs. 24-h GEOS-5 CTM forecasts of CO2 and CO columns for the same forecast time). We find strong error correlations (r2>0.5) between CO2 and CO columns over much of the extra-tropical Northern Hemisphere throughout the year, and strong consistency between different methods to estimate the error correlation. Application of the averaging kernels used in the retrieval for thermal IR CO measurements weakens the correlation coefficients by 15% on average (mostly due to variability in the averaging kernels) but preserves the large-scale correlation structure. We present a simple inverse modeling application to demonstrate that CO2-CO error correlations can indeed significantly reduce uncertainty on surface carbon fluxes in a joint CO2-CO inversion vs. a CO2-only inversion.


2019 ◽  
Vol 19 (21) ◽  
pp. 13569-13579 ◽  
Author(s):  
Helen M. Worden ◽  
A. Anthony Bloom ◽  
John R. Worden ◽  
Zhe Jiang ◽  
Eloise A. Marais ◽  
...  

Abstract. Biogenic non-methane volatile organic compounds (NMVOCs) emitted from vegetation are a primary source for the chemical production of carbon monoxide (CO) in the atmosphere, and these biogenic emissions account for about 18 % of the global CO burden. Partitioning CO fluxes to different source types in top-down inversion methods is challenging; typically a simple scaling of the posterior flux to prior flux values for fossil fuel, biogenic and biomass burning sources is used. Here we show top-down estimates of biogenic CO fluxes using a Bayesian inference approach, which explicitly accounts for both posterior and a priori CO flux uncertainties. This approach re-partitions CO fluxes following inversion of Measurements Of Pollution In The Troposphere (MOPITT) CO observations with the GEOS-Chem model, a global chemical transport model driven by assimilated meteorology from the NASA Goddard Earth Observing System (GEOS). We compare these results to the prior information for CO used to represent biogenic NMVOCs from GEOS-Chem, which uses the Model of Emissions of Gases and Aerosols from Nature (MEGAN) for biogenic emissions. We evaluate the a posteriori biogenic CO fluxes against top-down estimates of isoprene fluxes using Ozone Monitoring Instrument (OMI) formaldehyde observations. We find similar seasonality and spatial consistency in the posterior CO and top-down isoprene estimates globally. For the African savanna region, both top-down CO and isoprene seasonality vary significantly from the MEGAN a priori inventory. This method for estimating biogenic sources of CO will provide an independent constraint on modeled biogenic emissions and has the potential for diagnosing decadal-scale changes in emissions due to land-use change and climate variability.


2011 ◽  
Vol 11 (18) ◽  
pp. 9887-9898 ◽  
Author(s):  
M. Rigby ◽  
A. J. Manning ◽  
R. G. Prinn

Abstract. We present a method for estimating emissions of long-lived trace gases from a sparse global network of high-frequency observatories, using both a global Eulerian chemical transport model and Lagrangian particle dispersion model. Emissions are derived in a single step after determining sensitivities of the observations to initial conditions, the high-resolution emissions field close to observation points, and larger regions further from the measurements. This method has the several advantages over inversions using one type of model alone, in that: high-resolution simulations can be carried out in limited domains close to the measurement sites, with lower resolution being used further from them; the influence of errors due to aggregation of emissions close to the measurement sites can be minimized; assumptions about boundary conditions to the Lagrangian model do not need to be made, since the entire emissions field is estimated; any combination of appropriate models can be used, with no code modification. Because the sensitivity to the entire emissions field is derived, the estimation can be carried out using traditional statistical methods without the need for multiple steps in the inversion. We demonstrate the utility of this approach by determining global SF6 emissions using measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) between 2007 and 2009. The global total and large-scale patterns of the derived emissions agree well with previous studies, whilst allowing emissions to be determined at higher resolution than has previously been possible, and improving the agreement between the modeled and observed mole fractions at some sites.


2009 ◽  
Vol 9 (3) ◽  
pp. 11783-11810
Author(s):  
H. Wang ◽  
D. J. Jacob ◽  
M. Kopacz ◽  
D. B. A. Jones ◽  
P. Suntharalingam ◽  
...  

Abstract. Inverse modeling of CO2 satellite observations to better quantify carbon surface fluxes requires a forward model such as a chemical transport model (CTM) to relate the fluxes to the observed column concentrations. Model transport error is an important source of observational error. We investigate the potential of using CO satellite observations as additional constraints in a joint CO2–CO inversion to improve CO2 flux estimates, by exploiting the CTM transport error correlations between CO2 and CO. We estimate the error correlation globally and for different seasons by a paired-model method (comparing CTM simulations of CO2 and CO columns using different assimilated meteorological data sets for the same meteorological year) and a paired-forecast method (comparing 48- vs. 24-h CTM forecasts of CO2 and CO columns for the same forecast time). We find strong positive and negative error correlations (r2>0.5) between CO2 and CO columns over much of the world throughout the year, and strong consistency between different methods to estimate the error correlation. Application of the averaging kernels used in the retrieval for thermal IR CO measurements weakens the correlation coefficients by 15% on average (mostly due to variability in the averaging kernels) but preserves the large-scale correlation structure. Results from a testbed inverse modeling application show that CO2–CO error correlations can indeed significantly reduce uncertainty on surface carbon fluxes in a joint CO2–CO inversion vs. a CO2–only inversion.


2016 ◽  
Author(s):  
K. M. Emmerson ◽  
I. E. Galbally ◽  
A. B. Guenther ◽  
C. Paton-Walsh ◽  
E.-A. Guerette ◽  
...  

Abstract. The biogenic emissions of isoprene and monoterpenes are one of the main drivers of atmospheric photochemistry, including oxidant and secondary organic aerosol production. In this paper, the emission rates of isoprene and monoterpenes from Australian vegetation are investigated for the first time using the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGANv2.1), the CSIRO chemical transport model, and atmospheric observations of isoprene, monoterpenes and isoprene oxidation products (methacrolein and methyl-vinyl-ketone). Observations from four field campaigns during three different seasons are used, covering urban, coastal suburban and inland forest areas. The observed concentrations of isoprene and monoterpenes were of a broadly similar magnitude, which may indicate that southeast Australia holds an unusual position where neither chemical species dominates. The model results overestimate the observed atmospheric concentrations of isoprene (up to a factor of 6) and underestimate the monoterpene concentrations (up to a factor of 4). This may occur because the emission rates currently used in MEGANv2.1 for Australia are drawn mainly from young Eucalypt trees (< 7 years), which may emit more isoprene than adult trees. There is no single increase/decrease factor for the emissions which suits all seasons and conditions studied. There is a need for further field measurements of in-situ isoprene and monoterpene emission fluxes in Australia.


2011 ◽  
Vol 4 (3) ◽  
pp. 2047-2080 ◽  
Author(s):  
A. Ganshin ◽  
T. Oda ◽  
M. Saito ◽  
S. Maksyutov ◽  
V. Valsala ◽  
...  

Abstract. We designed a method to simulate atmospheric CO2 concentrations at several continuous observation sites around the globe using surface fluxes at a very high spatial resolution. The simulations presented in this study were performed using a Lagrangian particle dispersion model coupled to a global atmospheric tracer transport model with prescribed global surface CO2 flux maps at a 1 × 1 km resolution. The surface fluxes used in the simulations were prepared by assembling the individual components of terrestrial, oceanic and fossil fuel CO2 fluxes. This experimental setup (i.e., a transport model running at a medium resolution, coupled to a high-resolution Lagrangian particle dispersion model together with global surface fluxes at a very high resolution), which was designed to represent high-frequency variations in atmospheric CO2 concentration, has not been reported at a global scale previously. Two sensitivity experiments were performed: (a) using the global transport model without coupling to the Lagrangian dispersion model, and (b) using the coupled model with a reduced resolution of surface fluxes, in order to evaluate the performance of Eulerian-Lagrangian coupling and the role of high-resolution fluxes in simulating high-frequency variations in atmospheric CO2 concentrations. A correlation analysis between observed and simulated atmospheric CO2 concentrations at selected locations revealed that the inclusion of both Eulerian-Lagrangian coupling and high-resolution fluxes improves the high-frequency simulations of the model. The results highlight the potential of a coupled Eulerian-Lagrangian model in simulating high-frequency atmospheric CO2 concentrations at many locations worldwide. The model performs well in representing observations of atmospheric CO2 concentrations at high spatial and temporal resolutions, especially for coastal sites and sites located close to sources of large anthropogenic emissions. While this study focused on simulations of CO2 concentrations, the model could be used for other atmospheric compounds with known estimated emissions.


2006 ◽  
Vol 6 (10) ◽  
pp. 3149-3161 ◽  
Author(s):  
S. Davies ◽  
G. W. Mann ◽  
K. S. Carslaw ◽  
M. P. Chipperfield ◽  
J. J. Remedios ◽  
...  

Abstract. Observations of gas-phase HNO3 and N2O in the polar stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding aboard the ENVISAT satellite (MIPAS-E) were made during the cold Arctic winter of 2002/2003. Vortex temperatures were unusually low in early winter and remained favourable for polar stratospheric cloud formation and denitrification until mid-January. MIPAS-E observations provide the first dataset with sufficient coverage of the polar vortex in mid-winter which enables a reasonable estimate of the timing of onset and spatial distribution of denitrification of the Arctic lower stratosphere to be performed. We use the observations from MIPAS-E to test the evolution of denitrification in the DLAPSE (Denitrification by Lagrangian Particle Sedimentation) microphysical denitrification model coupled to the SLIMCAT chemical transport model. In addition, the predicted denitrification from a simple equilibrium nitric acid trihydrate-based scheme is also compared with MIPAS-E. Modelled denitrification is compared with in-vortex NOy and N2O observations from the balloon-borne MarkIV interferometer in mid-December. Denitrification was clearly observed by MIPAS-E in mid-December 2002 and reached 80% in the core of the vortex by early January 2003. The DLAPSE model is broadly able to capture both the timing of onset and the spatial distribution of the observed denitrification. A simple thermodynamic equilibrium scheme is able to reproduce the observed denitrification in the core of the vortex but overestimates denitrification closer to the vortex edge. This study also suggests that the onset of denitrification in simple thermodynamic schemes may be earlier than in the MIPAS-E observations.


2012 ◽  
Vol 12 (21) ◽  
pp. 10367-10385 ◽  
Author(s):  
C. Vigouroux ◽  
T. Stavrakou ◽  
C. Whaley ◽  
B. Dils ◽  
V. Duflot ◽  
...  

Abstract. Reunion Island (21° S, 55° E), situated in the Indian Ocean at about 800 km east of Madagascar, is appropriately located to monitor the outflow of biomass burning pollution from Southern Africa and Madagascar, in the case of short-lived compounds, and from other Southern Hemispheric landmasses such as South America, in the case of longer-lived species. Ground-based Fourier transform infrared (FTIR) solar absorption observations are sensitive to a large number of biomass burning products. We present in this work the FTIR retrieval strategies, suitable for very humid sites such as Reunion Island, for hydrogen cyanide (HCN), ethane (C2H6), acetylene (C2H2), methanol (CH3OH), and formic acid (HCOOH). We provide their total columns time-series obtained from the measurements during August–October 2004, May–October 2007, and May 2009–December 2010. We show that biomass burning explains a large part of the observed seasonal and interannual variability of the chemical species. The correlations between the daily mean total columns of each of the species and those of CO, also measured with our FTIR spectrometer at Reunion Island, are very good from August to November (R &amp;geq; 0.86). This allows us to derive, for that period, the following enhancement ratios with respect to CO: 0.0047, 0.0078, 0.0020, 0.012, and 0.0046 for HCN, C2H6, C2H2, CH3OH, and HCOOH, respectively. The HCN ground-based data are compared to the chemical transport model GEOS-Chem, while the data for the other species are compared to the IMAGESv2 model. We show that using the HCN/CO ratio derived from our measurements (0.0047) in GEOS-Chem reduces the underestimation of the modeled HCN columns compared with the FTIR measurements. The comparisons between IMAGESv2 and the long-lived species C2H6 and C2H2 indicate that the biomass burning emissions used in the model (from the GFED3 inventory) are probably underestimated in the late September–October period for all years of measurements, and especially in 2004. The comparisons with the short-lived species, CH3OH and HCOOH, with lifetimes of around 5 days, suggest that the emission underestimation in late September–October 2004, occurs more specifically in the Southeastern Africa-Madagascar region. The very good correlation of CH3OH and HCOOH with CO suggests that, despite the dominance of the biogenic source of these compounds on the global scale, biomass burning is their major source at Reunion Island between August and November.


Sign in / Sign up

Export Citation Format

Share Document