scholarly journals Increase in elemental carbon values between 1970 and 2004 observed in a 300-year ice core from Holtedahlfonna (Svalbard)

2014 ◽  
Vol 14 (20) ◽  
pp. 11447-11460 ◽  
Author(s):  
M. M. Ruppel ◽  
E. Isaksson ◽  
J. Ström ◽  
E. Beaudon ◽  
J. Svensson ◽  
...  

Abstract. Black carbon (BC) is a light-absorbing particle that warms the atmosphere–Earth system. The climate effects of BC are amplified in the Arctic, where its deposition on light surfaces decreases the albedo and causes earlier melt of snow and ice. Despite its suggested significant role in Arctic climate warming, there is little information on BC concentrations and deposition in the past. Here we present results on BC (here operationally defined as elemental carbon (EC)) concentrations and deposition on a Svalbard glacier between 1700 and 2004. The inner part of a 125 m deep ice core from Holtedahlfonna glacier (79°8' N, 13°16' E, 1150 m a.s.l.) was melted, filtered through a quartz fibre filter and analysed for EC using a thermal–optical method. The EC values started to increase after 1850 and peaked around 1910, similar to ice core records from Greenland. Strikingly, the EC values again increase rapidly between 1970 and 2004 after a temporary low point around 1970, reaching unprecedented values in the 1990s. This rise is not seen in Greenland ice cores, and it seems to contradict atmospheric BC measurements indicating generally decreasing atmospheric BC concentrations since 1989 in the Arctic. For example, changes in scavenging efficiencies, post-depositional processes and differences in the vertical distribution of BC in the atmosphere are discussed for the differences between the Svalbard and Greenland ice core records, as well as the ice core and atmospheric measurements in Svalbard. In addition, the divergent BC trends between Greenland and Svalbard ice cores may be caused by differences in the analytical methods used, including the operational definitions of quantified particles, and detection efficiencies of different-sized BC particles. Regardless of the cause of the increasing EC values between 1970 and 2004, the results have significant implications for the past radiative energy balance at the coring site.

2014 ◽  
Vol 14 (9) ◽  
pp. 13197-13231
Author(s):  
M. M. Ruppel ◽  
E. Isaksson ◽  
J. Ström ◽  
E. Beaudon ◽  
J. Svensson ◽  
...  

Abstract. Black carbon (BC) is a light-absorbing particle that warms the atmosphere–Earth system. The climate effects of BC are amplified in the Arctic where its deposition on light surfaces decreases the albedo and causes earlier melt of snow and ice. Despite its suggested significant role in Arctic climate warming there is little information on BC concentrations and deposition in the past. Here we present results on BC (here operationally defined as elemental carbon (EC)) concentrations and deposition on a Svalbard glacier between 1700 and 2004. The inner part of a 125 m deep ice core from Holtedahlfonna glacier (79°8' N, 13°16' E, 1150 m a.s.l.) was melted, filtered through a quartz fibre filter and analysed for EC using a thermal optical method. The EC values started to increase after 1850 and peaked around 1910, similar to ice core records from Greenland. Strikingly, the EC values again increase rapidly between 1970 and 2004. This rise is not seen in Greenland ice cores and it seems to contradict atmospheric BC measurements indicating generally decreasing atmospheric BC concentrations since 1989 in the Arctic. Several hypotheses, such as changes in scavenging efficiencies, post-depositional processes and differences in the vertical distribution of BC in the atmosphere, are discussed for the differences between the Svalbard and Greenland ice core records, and the ice core and atmospheric measurements in Svalbard. In addition, the divergent BC trends between Greenland and Svalbard ice cores may be caused by differences in the analytical methods used, including the operational definitions of quantified particles, and detection efficiencies of different-sized BC particles. Regardless of the cause of the increasing EC values in the recent decades, the results have significant implications for the past radiative energy balance at the coring site.


2017 ◽  
Vol 17 (20) ◽  
pp. 12779-12795 ◽  
Author(s):  
Meri M. Ruppel ◽  
Joana Soares ◽  
Jean-Charles Gallet ◽  
Elisabeth Isaksson ◽  
Tõnu Martma ◽  
...  

Abstract. The climate impact of black carbon (BC) is notably amplified in the Arctic by its deposition, which causes albedo decrease and subsequent earlier snow and ice spring melt. To comprehensively assess the climate impact of BC in the Arctic, information on both atmospheric BC concentrations and deposition is essential. Currently, Arctic BC deposition data are very scarce, while atmospheric BC concentrations have been shown to generally decrease since the 1990s. However, a 300-year Svalbard ice core showed a distinct increase in EC (elemental carbon, proxy for BC) deposition from 1970 to 2004 contradicting atmospheric measurements and modelling studies. Here, our objective was to decipher whether this increase has continued in the 21st century and to investigate the drivers of the observed EC deposition trends. For this, a shallow firn core was collected from the same Svalbard glacier, and a regional-to-meso-scale chemical transport model (SILAM) was run from 1980 to 2015. The ice and firn core data indicate peaking EC deposition values at the end of the 1990s and lower values thereafter. The modelled BC deposition results generally support the observed glacier EC variations. However, the ice and firn core results clearly deviate from both measured and modelled atmospheric BC concentration trends, and the modelled BC deposition trend shows variations seemingly independent from BC emission or atmospheric BC concentration trends. Furthermore, according to the model ca. 99 % BC mass is wet-deposited at this Svalbard glacier, indicating that meteorological processes such as precipitation and scavenging efficiency have most likely a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends. BC emission source sectors contribute differently to the modelled atmospheric BC concentrations and BC deposition, which further supports our conclusion that different processes affect atmospheric BC concentration and deposition trends. Consequently, Arctic BC deposition trends should not directly be inferred based on atmospheric BC measurements, and more observational BC deposition data are required to assess the climate impact of BC in Arctic snow.


2020 ◽  
Author(s):  
Marie G. P. Cavitte ◽  
Quentin Dalaiden ◽  
Hugues Goosse ◽  
Jan T. M. Lenaerts ◽  
Elizabeth R. Thomas

Abstract. Ice cores are an important record of the past surface mass balance (SMB) of ice sheets, with SMB mitigating the ice sheets’ sea level impact over the recent decades. For the Antarctic Ice Sheet (AIS), SMB is dominated by large-scale atmospheric circulation, which collects warm moist air from further north and releases it in the form of snow as widespread accumulation or focused atmospheric rivers on the continent. This implies that the snow deposited at the surface of the AIS should record strongly coupled SMB and surface air temperature (SAT) variations. Ice cores use δ18O as a proxy for SAT as they do not record SAT directly. Here, using isotope-enabled global climate models and the RACMO2.3 regional climate model, we calculate positive SMB-SAT and δ18O-SMB correlations over ∼90 % of the AIS. The high spatial resolution of the RACMO2.3 model allows us to highlight a number of areas where SMB and SAT are not correlated, and show that wind-driven processes acting locally, such as Foehn and katabatic effects, can overwhelm the large-scale atmospheric input in SMB and SAT responsible for the positive SMB-SAT correlations. We focus in particular on Dronning Maud Land, East Antarctica, where the ice promontories clearly show these wind-induced effects. However, using the PAGES2k ice core compilations of SMB and δ18O of Thomas et al. (2017) and Stenni et al. (2017), we obtain a weak correlation, on the order of 0.1, between SMB and δ18O over the past ~150 years. We obtain an equivalently weak correlation between ice core SMB and the SAT reconstruction of Nicolas and Bromwich (2014) over the past ~50 years, although the ice core sites are not spatially co-located with the areas displaying a low SMB-SAT correlation in the models. To resolve the discrepancy between the measured and modeled signals, we show that averaging the ice core records in close spatial proximity increases their SMB-SAT correlation. This increase shows that the weak measured correlation likely results from random noise present in the ice core records, but is not large enough to match the correlation calculated in the models. Our results indicate thus a positive correlation between SAT and SMB in models and ice core reconstructions but with a weaker value in observations that may be due to missing processes in models or some systematic biases in ice core data that are not removed by a simple average.


2017 ◽  
Author(s):  
Meri M. Ruppel ◽  
Joana Soares ◽  
Jean-Charles Gallet ◽  
Elisabeth Isaksson ◽  
Tõnu Martma ◽  
...  

Abstract. The climate impact of black carbon (BC) is notably amplified in the Arctic by its deposition that causes albedo decrease and subsequent earlier snow and ice spring melt. To comprehensively assess the climate impact of BC in the Arctic, information on both atmospheric BC concentrations and deposition are essential. Currently, Arctic BC deposition data are very scarce, while atmospheric BC concentrations have been shown to generally decrease since the 1990s. However, a 300-year Svalbard ice core showed a distinct increase in EC (elemental carbon, proxy for BC) deposition from 1970 to 2004 contradicting atmospheric measurements and modelling studies. Here, our objective was to decipher whether this increase has continued in the 21st century, and to investigate the drivers of the observed EC deposition trends. For this, a shallow firn core was collected from the same Svalbard glacier, and a regional-to-meso-scale chemical transport model (SILAM) was run from 1980 to 2015. The ice and firn core data indicate peaking EC deposition values at the end of the 1990s, and lower values thereafter. The modelled BC deposition results generally support the observed glacier EC variations. However, the ice and firn core results clearly deviate from both measured and modelled atmospheric BC concentration trends, and the modelled BC deposition trend shows variations seemingly independent from BC emission or atmospheric BC concentration trends. Furthermore, ca. 99 % BC mass is wet-deposited at this Svalbard glacier, indicating that meteorological processes such as precipitation and scavenging efficiency have most likely a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends. BC emission source sectors contribute differently to the modelled atmospheric BC concentrations and BC deposition, which further supports our conclusion that different processes affect atmospheric BC concentration and deposition trends. Consequently, Arctic BC deposition trends should not directly be inferred based on atmospheric BC measurements, and more observational BC deposition data are required to assess the climate impact of BC in Arctic snow.


2007 ◽  
Vol 49 (3) ◽  
pp. 429-434 ◽  
Author(s):  
Roy M. Koerner ◽  
Leif Lundgaard

ABSTRACT Ice core and mass balance studies from glaciers, ice caps and ice sheets constitute an ideal medium for monitoring and studying present and past environmental change and, as such, make a valuable contribution to the present debate over anthropogenic forcing of climate. Data derived from 32 years of measurements in the Canadian Arctic show no significant trends in glacier mass balance, ice melt, or snow accumulation, although the mass balance continues to be slightly negative. Models suggest that industrial aerosol loading of the atmosphere should add to the warming effect of greenhouse gases. However, we have found a sharp increase in the concentration of industrial pollutants in snow deposited since the early 1950's which makes the trendless nature of our various time series surprising. Spatial differences in the nature of climatic change may account for the lack of trend in the Queen Elizabeth Islands but encourages similar investigations to this study elsewhere in the circumpolar region. A global warming trend over the past 150 years has been demonstrated from instrumental data and is evident in our ice cores. However, the ice core data and glacier geometry changes in the Canadian Arctic suggest the Arctic warming is more pronounced in summer than winter. The same warming trend is not unique when viewed in the context of changes over the past 10,000 or 100,000 years. This suggests the 150-year trend is part of the natural climate variability.


2020 ◽  
Vol 14 (11) ◽  
pp. 4083-4102
Author(s):  
Marie G. P. Cavitte ◽  
Quentin Dalaiden ◽  
Hugues Goosse ◽  
Jan T. M. Lenaerts ◽  
Elizabeth R. Thomas

Abstract. Ice cores are an important record of the past surface mass balance (SMB) of ice sheets, with SMB mitigating the ice sheets' sea level impact over the recent decades. For the Antarctic Ice Sheet (AIS), SMB is dominated by large-scale atmospheric circulation, which collects warm moist air from further north and releases it in the form of snow as widespread accumulation or focused atmospheric rivers on the continent. This suggests that the snow deposited at the surface of the AIS should record strongly coupled SMB and surface air temperature (SAT) variations. Ice cores use δ18O as a proxy for SAT as they do not record SAT directly. Here, using isotope-enabled global climate models and the RACMO2.3 regional climate model, we calculate positive SMB–SAT and SMB–δ18O annual correlations over ∼90 % of the AIS. The high spatial resolution of the RACMO2.3 model allows us to highlight a number of areas where SMB and SAT are not correlated, and we show that wind-driven processes acting locally, such as foehn and katabatic effects, can overwhelm the large-scale atmospheric contribution in SMB and SAT responsible for the positive SMB–SAT annual correlations. We focus in particular on Dronning Maud Land, East Antarctica, where the ice promontories clearly show these wind-induced effects. However, using the PAGES2k ice core compilations of SMB and δ18O of Thomas et al. (2017) and Stenni et al. (2017), we obtain a weak annual correlation, on the order of 0.1, between SMB and δ18O over the past ∼150 years. We obtain an equivalently weak annual correlation between ice core SMB and the SAT reconstruction of Nicolas and Bromwich (2014) over the past ∼50 years, although the ice core sites are not spatially co-located with the areas displaying a low SMB–SAT annual correlation in the models. To resolve the discrepancy between the measured and modeled signals, we show that averaging the ice core records in close spatial proximity increases their SMB–SAT annual correlation. This increase shows that the weak measured annual correlation partly results from random noise present in the ice core records, but the change is not large enough to match the annual correlation calculated in the models. Our results thus indicate a positive correlation between SAT and SMB in models and ice core reconstructions but with a weaker value in observations that may be due to missing processes in models or some systematic biases in ice core data that are not removed by a simple average.


2021 ◽  
Vol 7 (22) ◽  
pp. eabc1379
Author(s):  
Pengfei Liu ◽  
Jed O. Kaplan ◽  
Loretta J. Mickley ◽  
Yang Li ◽  
Nathan J. Chellman ◽  
...  

Fire plays a pivotal role in shaping terrestrial ecosystems and the chemical composition of the atmosphere and thus influences Earth’s climate. The trend and magnitude of fire activity over the past few centuries are controversial, which hinders understanding of preindustrial to present-day aerosol radiative forcing. Here, we present evidence from records of 14 Antarctic ice cores and 1 central Andean ice core, suggesting that historical fire activity in the Southern Hemisphere (SH) exceeded present-day levels. To understand this observation, we use a global fire model to show that overall SH fire emissions could have declined by 30% over the 20th century, possibly because of the rapid expansion of land use for agriculture and animal production in middle to high latitudes. Radiative forcing calculations suggest that the decreasing trend in SH fire emissions over the past century largely compensates for the cooling effect of increasing aerosols from fossil fuel and biofuel sources.


2021 ◽  
Vol 34 (10) ◽  
pp. 3839-3852
Author(s):  
Stacy E. Porter ◽  
Ellen Mosley-Thompson ◽  
Lonnie G. Thompson ◽  
Aaron B. Wilson

AbstractUsing an assemblage of four ice cores collected around the Pacific basin, one of the first basinwide histories of Pacific climate variability has been created. This ice core–derived index of the interdecadal Pacific oscillation (IPO) incorporates ice core records from South America, the Himalayas, the Antarctic Peninsula, and northwestern North America. The reconstructed IPO is annually resolved and dates to 1450 CE. The IPO index compares well with observations during the instrumental period and with paleo-proxy assimilated datasets throughout the entire record, which indicates a robust and temporally stationary IPO signal for the last ~550 years. Paleoclimate reconstructions from the tropical Pacific region vary greatly during the Little Ice Age (LIA), although the reconstructed IPO index in this study suggests that the LIA was primarily defined by a weak, negative IPO phase and hence more La Niña–like conditions. Although the mean state of the tropical Pacific Ocean during the LIA remains uncertain, the reconstructed IPO reveals some interesting dynamical relationships with the intertropical convergence zone (ITCZ). In the current warm period, a positive (negative) IPO coincides with an expansion (contraction) of the seasonal latitudinal range of the ITCZ. This relationship is not stationary, however, and is virtually absent throughout the LIA, suggesting that external forcing, such as that from volcanoes and/or reduced solar irradiance, could be driving either the ITCZ shifts or the climate dominating the ice core sites used in the IPO reconstruction.


2013 ◽  
Vol 9 (4) ◽  
pp. 1403-1416 ◽  
Author(s):  
S. Preunkert ◽  
M. Legrand

Abstract. Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps), are here used to reconstruct past aerosol load and composition of the free European troposphere from before World War II to present. Available ice core records include inorganic (Na+, Ca2+, NH4+, Cl−, NO3−, and SO42−) and organic (carboxylates, HCHO, humic-like substances, dissolved organic carbon, water-insoluble organic carbon, and black carbon) compounds and fractions that permit reconstructing the key aerosol components and their changes over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921–1951 to 1971–1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). Thus, not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water-soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarios dealing with climate forcing by atmospheric aerosol.


2016 ◽  
Vol 62 (236) ◽  
pp. 1037-1048 ◽  
Author(s):  
F. PARRENIN ◽  
S. FUJITA ◽  
A. ABE-OUCHI ◽  
K. KAWAMURA ◽  
V. MASSON-DELMOTTE ◽  
...  

ABSTRACTDocumenting past changes in the East Antarctic surface mass balance is important to improve ice core chronologies and to constrain the ice-sheet contribution to global mean sea-level change. Here we reconstruct past changes in the ratio of surface mass balance (SMB ratio) between the EPICA Dome C (EDC) and Dome Fuji (DF) East Antarctica ice core sites, based on a precise volcanic synchronization of the two ice cores and on corrections for the vertical thinning of layers. During the past 216 000 a, this SMB ratio, denoted SMBEDC/SMBDF, varied between 0.7 and 1.1, being small during cold periods and large during warm periods. Our results therefore reveal larger amplitudes of changes in SMB at EDC compared with DF, consistent with previous results showing larger amplitudes of changes in water stable isotopes and estimated surface temperature at EDC compared with DF. Within the last glacial inception (Marine Isotope Stages, MIS-5c and MIS-5d), the SMB ratio deviates by up to 0.2 from what is expected based on differences in water stable isotope records. Moreover, the SMB ratio is constant throughout the late parts of the current and last interglacial periods, despite contrasting isotopic trends.


Sign in / Sign up

Export Citation Format

Share Document