scholarly journals Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado

2014 ◽  
Vol 14 (5) ◽  
pp. 2657-2667 ◽  
Author(s):  
E. J. T. Levin ◽  
A. J. Prenni ◽  
B. B. Palm ◽  
D. A. Day ◽  
P. Campuzano-Jost ◽  
...  

Abstract. Aerosol hygroscopicity describes the ability of a particle to take up water and form a cloud droplet. Modeling studies have shown sensitivity of precipitation-producing cloud systems to the availability of aerosol particles capable of serving as cloud condensation nuclei (CCN), and hygroscopicity is a key parameter controlling the number of available CCN. Continental aerosol is typically assumed to have a representative hygroscopicity parameter, κ, of 0.3; however, in remote locations this value can be lower due to relatively large mass fractions of organic components. To further our understanding of aerosol properties in remote areas, we measured size-resolved aerosol chemical composition and hygroscopicity in a forested, mountainous site in Colorado during the six-week BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen–Rocky Mountain Biogenic Aerosol Study) campaign. This campaign followed a year-long measurement period at this site, and results from the intensive campaign shed light on the previously reported seasonal cycle in aerosol hygroscopicity. New particle formation events were observed routinely at this site and nucleation mode composition measurements indicated that the newly formed particles were predominantly organic. These events likely contribute to the dominance of organic species at smaller sizes, where aerosol organic mass fractions were between 70 and 90%. Corresponding aerosol hygroscopicity was observed to be in the range κ = 0.15–0.22, with hygroscopicity increasing with particle size. Aerosol chemical composition measured by an aerosol mass spectrometer and calculated from hygroscopicity measurements agreed very well during the intensive study, with an assumed value of κorg = 0.13 resulting in the best agreement.

2013 ◽  
Vol 13 (9) ◽  
pp. 23817-23843 ◽  
Author(s):  
E. J. T. Levin ◽  
A. J. Prenni ◽  
B. Palm ◽  
D. Day ◽  
P. Campuzano-Jost ◽  
...  

Abstract. Aerosol hygroscopicity describes the ability of a particle to take up water and form a cloud droplet. Modeling studies have shown sensitivity of precipitation-producing cloud systems to the availability of aerosol particles capable of serving as cloud condensation nuclei (CCN), and hygroscopicity is a key parameter controlling the number of available CCN. Continental aerosol is typically assumed to have a representative hygroscopicity parameter, κ, of 0.3; however, in remote locations this value can be lower due to relatively large mass fractions of organic components. To further our understanding of aerosol properties in remote areas, we measured size-resolved aerosol chemical composition and hygroscopicity in a forested, mountainous site in Colorado during the six-week BEACHON-RoMBAS campaign. This campaign followed a year-long measurement period at this site, and results from the intensive campaign shed light on the previously reported seasonal cycle in aerosol hygroscopicity. New particle formation events were observed routinely at this site and nucleation mode composition measurements indicated that the newly formed particles were predominantly organic. These events likely contribute to the dominance of organic species at smaller sizes, where aerosol organic mass fractions of non-refractory components were between 70–90%. Corresponding aerosol hygroscopicity was observed to range from κ = 0.15–0.22, with hygroscopicity increasing with particle size. Aerosol chemical composition measured by an Aerosol Mass Spectrometer and calculated from hygroscopicity measurements agreed very well during the intensive study with an assumed value of κorg = 0.13 resulting in the best agreement.


2010 ◽  
Vol 10 (21) ◽  
pp. 10453-10471 ◽  
Author(s):  
V. A. Lanz ◽  
A. S. H. Prévôt ◽  
M. R. Alfarra ◽  
S. Weimer ◽  
C. Mohr ◽  
...  

Abstract. Real-time measurements of non-refractory submicron aerosols (NR-PM1) were conducted within the greater Alpine region (Switzerland, Germany, Austria, France and Liechtenstein) during several week-long field campaigns in 2002–2009. This region represents one of the most important economic and recreational spaces in Europe. A large variety of sites was covered including urban backgrounds, motorways, rural, remote, and high-alpine stations, and also mobile on-road measurements were performed. Inorganic and organic aerosol (OA) fractions were determined by means of aerosol mass spectrometry (AMS). The data originating from 13 different field campaigns and the combined data have been utilized for providing an improved temporal and spatial data coverage. The average mass concentration of NR-PM1 for the different campaigns typically ranged between 10 and 30 μg m−3. Overall, the organic portion was most abundant, ranging from 36% to 81% of NR-PM1. Other main constituents comprised ammonium (5–15%), nitrate (8–36%), sulfate (3–26%), and chloride (0–5%). These latter anions were, on average, fully neutralized by ammonium. As a major result, time of the year (winter vs. summer) and location of the site (Alpine valleys vs. Plateau) could largely explain the variability in aerosol chemical composition for the different campaigns and were found to be better descriptors for aerosol composition than the type of site (urban, rural etc.). Thus, a reassessment of classifications of measurements sites might be considered in the future, possibly also for other regions of the world. The OA data was further analyzed using positive matrix factorization (PMF) and the multi-linear engine ME (factor analysis) separating the total OA into its underlying components, such as oxygenated (mostly secondary) organic aerosol (OOA), hydrocarbon-like and freshly emitted organic aerosol (HOA), as well as OA from biomass burning (BBOA). OOA was ubiquitous, ranged between 36% and 94% of OA, and could be separated into a low-volatility and a semi-volatile fraction (LV-OOA and SV-OOA) for all summer campaigns at low altitude sites. Wood combustion (BBOA) accounted for a considerable fraction during wintertime (17–49% OA), particularly in narrow Alpine valleys BBOA was often the most abundant OA component. HOA/OA ratios were comparatively low for all campaigns (6–16%) with the exception of on-road, mobile measurements (23%) in the Rhine Valley. The abundance of the aerosol components and the retrievability of SV-OOA and LV-OOA are discussed in the light of atmospheric chemistry and physics.


2006 ◽  
Vol 6 (3) ◽  
pp. 5585-5628 ◽  
Author(s):  
K. Tsigaridis ◽  
M. Krol ◽  
F. J. Dentener ◽  
Y. Balkanski ◽  
J. Lathière ◽  
...  

Abstract. To elucidate human induced changes of aerosol load and composition in the atmosphere, a coupled aerosol and gas-phase chemistry transport model of the troposphere and lower stratosphere has been used. This is the first 3-d modeling study that focuses on aerosol chemical composition change since preindustrial times considering the secondary organic aerosol formation together with all other main aerosol components including nitrate. In particular, we evaluate non-sea-salt sulfate (nss-SO4=), ammonium (NH4+), nitrate (NO3-), black carbon (BC), sea-salt, dust, primary and secondary organics (POA and SOA) with a focus on the importance of secondary organic aerosols. Our calculations show that the aerosol optical depth (AOD) has increased by about 21% since preindustrial times. This enhancement of AOD is attributed to a rise in the atmospheric load of BC, nss-SO4=, NO3-, POA and SOA by factors of 3.3, 2.6, 2.7, 2.3 and 1.2, respectively, whereas we assumed that the natural dust and sea-salt sources remained constant. The nowadays increase in carbonaceous aerosol loading is dampened by a 34–42% faster conversion of hydrophobic to hydrophilic carbonaceous aerosol leading to higher removal rates. These changes between the various aerosol components resulted in significant modifications of the aerosol chemical composition. The relative importance of the various aerosol components is critical for the aerosol climatic effect, since atmospheric aerosols behave differently when their chemical composition changes. According to this study, the aerosol composition changed significantly over the different continents and with height since preindustrial times. The presence of anthropogenically emitted primary particles in the atmosphere facilitates the condensation of the semi-volatile species that form SOA onto the aerosol phase, particularly in the boundary layer. The SOA burden that is dominated by the natural component has increased by 24% while its contribution to the AOD has increased by 11%. The increase in oxidant levels and preexisting aerosol mass since preindustrial times is the reason of the burden change, since emissions have not changed significantly. The computed aerosol composition changes translate into about 2.5 times more water associated with non sea-salt aerosol. Additionally, aerosols contain 2.7 times more inorganic components nowadays than during the preindustrial times. We find that the increase in emissions of inorganic aerosol precursors is much larger than the corresponding aerosol increase, reflecting a non-linear atmospheric response.


2014 ◽  
Vol 14 (10) ◽  
pp. 14889-14931 ◽  
Author(s):  
F. Zhang ◽  
Z. Li ◽  
R. J. Li ◽  
L. Sun ◽  
C. Zhao ◽  
...  

Abstract. Aerosol hygroscopicity and cloud condensation nuclei (CCN) activity under clean conditions and polluted events are investigated based on size-resolved CCN and aerosol chemical composition observations during the Aerosol-CCN-Cloud Closure Experiment (AC3Exp) campaign conducted at Xianghe, China in summer 2013. About 14–22% of aerosol particles during the campaign are of externally mixed CCN-inactive particles that cannot serve as CCN under atmospheric typical supersaturation (SS) of ∼0.4%. A high sensitivity of Maximum activation fractions (MAF) to SS under polluted conditions has been observed. The pollutants can cause a maximum MAF decrease of 25–30% (at SS = 0.08%). Hygroscopicity parameter kappa (κ) are about 16–35% lower under polluted conditions than under clean conditions for particles in accumulation size range (80–180 nm); however, for particles in nucleation or Aitken size range (30–60 nm), κ is slightly higher under polluted conditions. A non-parallel observation (NPO) CCN closure study shows low correlation coefficient between estimated and observed CCN number concentrations (NCCN). About 30–40% uncertainties in NCCN prediction are associated with the changes of particle composition. A case study shows that CCN activation ratio (AR) increased with the increase of condensation nuclei (CN) number concentrations (NCN) in relatively clean days. In the case, AR exhibited good correlation with κchem, which is calculated from chemical volume fractions, due to particles mainly composed of soluble inorganics. On the contrary, AR declined with increase of NCN during polluted events when particles composed mostly of organics. Meanwhile, AR is closely related to f44, which is the fraction of total organic mass signal at m/z 44 and closely associated with particle organic oxidation level. Our study highlights the importance of aerosols chemical composition on determining the activation properties of aerosol particles, underlining the importance of long-term observation of CCN under different atmospheric environments, especially those with heavy pollution and high CN number concentrations.


2011 ◽  
Vol 11 (8) ◽  
pp. 21789-21834
Author(s):  
R. H. Moore ◽  
R. Bahreini ◽  
C. A. Brock ◽  
K. D. Froyd ◽  
J. Cozic ◽  
...  

Abstract. We present a comprehensive characterization of cloud condensation nuclei (CCN) sampled in the Alaskan Arctic during the 2008 Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project, a component of the POLARCAT and International Polar Year (IPY) initiatives. Four distinct air mass types were sampled including relatively pristine Arctic background conditions as well as biomass burning and anthropogenic pollution plumes. Despite differences in chemical composition, inferred aerosol hygroscopicities were fairly invariant and ranged from κ = 0.1–0.3 over the atmospherically-relevant range of water vapor supersaturations studied. Analysis of the individual mass spectral m/z 43 and 44 peaks from an aerosol mass spectrometer show the organic aerosols sampled to be well-oxygenated, consistent with with long-range transport and aerosol aging processes. However, inferred hygroscopicities are less than would be predicted based on previous parameterizations of biogenic oxygenated organic aerosol, suggesting an upper limit on organic aerosol hygroscopicity above which κ is less sensitive to the O:C ratio. Most Arctic aerosol act as CCN above 0.1 % supersaturation, although the data suggest the presence of an externally-mixed, non-CCN-active mode comprising approximately 0–20 % of the aerosol number. CCN closure was assessed using measured size distributions, bulk chemical composition measurements, and assumed aerosol mixing states; CCN predictions tended toward overprediction, with the best agreement (± 0–20 %) obtained by assuming the aerosol to be externally-mixed with soluble organics. Closure also varied with CCN concentration, and the best agreement was found for CCN concentrations above 100 cm−3 with a 1.5- to 3-fold overprediction at lower concentrations.


2013 ◽  
Vol 13 (12) ◽  
pp. 32353-32389 ◽  
Author(s):  
G. P. Almeida ◽  
J. Brito ◽  
C. A. Morales ◽  
M. F. Andrade ◽  
P. Artaxo

Abstract. Measurements of cloud condensation nuclei (CCN), aerosol size distribution and non-refractory chemical composition were performed from 16 to 31 October 2012 in the São Paulo Metropolitan Area (SPMA), Brazil. CCN measurements were performed at 0.2%, 0.4%, 0.6%, 0.8% and 1.0% water supersaturation and were subsequently compared with Köhler theory, considering the chemical composition. Real-time chemical composition has been obtained deploying for the first time in SPMA an Aerosol Chemical Ionization Monitor (ACSM). CCN closure analyses were performed considering internal mixture. Average aerosol composition during the studied period yielded 4.81 ± 3.05, 3.26 ± 2.10, 0.30 ± 0.27, 0.52 ± 0.32, 0.37 ± 0.21 and 0.04 ± 0.04 μg m−3 for organics, BC, NH4, SO4, NO3 and Cl, respectively. Particle number concentration was 12 813 ± 5350 cm−3, being a large fraction in the nucleation mode. CCN concentrations were on average 1090 ± 328 cm−3 and 3570 ± 1695 cm−3 at SS = 0.2% and SS = 1.0%, respectively. Results show an increase in aerosol hygroscopicity in the afternoon as a result of aerosol photochemical processing, leading to an enhancement of both organic and inorganic secondary aerosols in the atmosphere, as well as an increase in aerosol average diameter. Considering the bulk composition alone, CCN concentrations were substantially overpredicted (29.6 ± 45.1% at 0.2% supersaturation and 57.3 ± 30.0% at 1.0% supersaturation). Overall, the impact of composition on the calculated NCCN decreases with decreasing supersaturation, partially because using bulk composition introduces less bias for large diameters and lower critical supersaturations. Results suggest that the consideration of only inorganic fraction improves the calculated NCCN. Introducing a size-dependent chemical composition based on filter measurements from previous campaigns has considerably improved simulated values for NCCN (average overprediction error 3.0 ± 33.4% at 0.20% supersaturation and average under prediction error 2.4 ± 20.5% at 1.0% supersaturation). This study provides the first insight on aerosol real-time composition and hygroscopicity on a~site strongly impacted by emissions of a unique vehicular fleet due to the extensive biofuel usage.


2020 ◽  
Vol 20 (10) ◽  
pp. 5911-5922 ◽  
Author(s):  
Hing Cho Cheung ◽  
Charles Chung-Kuang Chou ◽  
Celine Siu Lan Lee ◽  
Wei-Chen Kuo ◽  
Shuenn-Chin Chang

Abstract. The chemical composition of fine particulate matter (PM2.5), the size distribution and number concentration of aerosol particles (NCN), and the number concentration of cloud condensation nuclei (NCCN) were measured at the northern tip of Taiwan during an intensive observation experiment from April 2017 to March 2018. The parameters of aerosol hygroscopicity (i.e., activation ratio, activation diameter and kappa of CCN) were retrieved from the measurements. Significant variations were found in the hygroscopicity of aerosols (kappa – κ – of 0.18–0.56, for water vapor supersaturation – SS – of 0.12 %–0.80 %), which were subject to various pollution sources, including aged air pollutants originating in eastern and northern China and transported by the Asian continental outflows and fresh particles emitted from local sources and distributed by land–sea breeze circulations as well as produced by processes of new particle formation (NPF). Cluster analysis was applied to the back trajectories of air masses to investigate their respective source regions. The results showed that aerosols associated with Asian continental outflows were characterized by lower NCN and NCCN values and by higher kappa values of CCN, whereas higher NCN and NCCN values with lower kappa values of CCN were observed in the aerosols associated with local air masses. Besides, it was revealed that the kappa value of CCN exhibited a decrease during the early stage of an event of new particle formation, which turned to an increasing trend over the later period. The distinct features in the hygroscopicity of aerosols were found to be consistent with the characteristics in the chemical composition of PM2.5. This study has depicted a clear seasonal characteristic of hygroscopicity and CCN activity under the influence of a complex mixture of pollutants from different regional and/or local pollution sources. Nevertheless, the mixing state and chemical composition of the aerosols critically influence the aerosol hygroscopicity, and further investigations are necessary to elucidate the atmospheric processing involved in the CCN activation in coastal areas.


2019 ◽  
Vol 202 ◽  
pp. 149-159 ◽  
Author(s):  
Gerson P. Almeida ◽  
Antônio T. Bittencourt ◽  
Marçal S. Evangelista ◽  
Marcelo S. Vieira-Filho ◽  
Adalgiza Fornaro

2013 ◽  
Vol 47 (6) ◽  
pp. 2645-2653 ◽  
Author(s):  
Liqing Hao ◽  
Sami Romakkaniemi ◽  
Aki Kortelainen ◽  
Antti Jaatinen ◽  
Harri Portin ◽  
...  

2018 ◽  
Vol 18 (9) ◽  
pp. 6907-6921 ◽  
Author(s):  
Jingye Ren ◽  
Fang Zhang ◽  
Yuying Wang ◽  
Don Collins ◽  
Xinxin Fan ◽  
...  

Abstract. Understanding the impacts of aerosol chemical composition and mixing state on cloud condensation nuclei (CCN) activity in polluted areas is crucial for accurately predicting CCN number concentrations (NCCN). In this study, we predict NCCN under five assumed schemes of aerosol chemical composition and mixing state based on field measurements in Beijing during the winter of 2016. Our results show that the best closure is achieved with the assumption of size dependent chemical composition for which sulfate, nitrate, secondary organic aerosols, and aged black carbon are internally mixed with each other but externally mixed with primary organic aerosol and fresh black carbon (external–internal size-resolved, abbreviated as EI–SR scheme). The resulting ratios of predicted-to-measured NCCN (RCCN_p∕m) were 0.90 – 0.98 under both clean and polluted conditions. Assumption of an internal mixture and bulk chemical composition (INT–BK scheme) shows good closure with RCCN_p∕m of 1.0 –1.16 under clean conditions, implying that it is adequate for CCN prediction in continental clean regions. On polluted days, assuming the aerosol is internally mixed and has a chemical composition that is size dependent (INT–SR scheme) achieves better closure than the INT–BK scheme due to the heterogeneity and variation in particle composition at different sizes. The improved closure achieved using the EI–SR and INT–SR assumptions highlight the importance of measuring size-resolved chemical composition for CCN predictions in polluted regions. NCCN is significantly underestimated (with RCCN_p∕m of 0.66 – 0.75) when using the schemes of external mixtures with bulk (EXT–BK scheme) or size-resolved composition (EXT–SR scheme), implying that primary particles experience rapid aging and physical mixing processes in urban Beijing. However, our results show that the aerosol mixing state plays a minor role in CCN prediction when the κorg exceeds 0.1.


Sign in / Sign up

Export Citation Format

Share Document