scholarly journals Technical Note: The horizontal scale dependence of the cloud overlap parameter α

2014 ◽  
Vol 14 (18) ◽  
pp. 9917-9922 ◽  
Author(s):  
I. Astin ◽  
L. Di Girolamo

Abstract. The cloud overlap parameter α relates the combined cloud fraction between two altitude levels in a grid box to the cloud fraction as derived under the maximum and random overlap assumptions. In a number of published studies in this and other journals, it is found that α tends to increase with an increasing scale. In this Technical Note, we investigate this analytically by considering what happens to α when two grid boxes are merged to give a grid box with twice the area. Assuming that α depends only on scale, then between any two fixed altitudes, there will be a linear relationship between the values of α on the two scales. We illustrate this by finding the relationship when cloud cover fractions are assumed to be uniformly distributed, but with varying degrees of horizontal and vertical correlation. Based on this, we conclude that α increases with scale if its value is less than the vertical correlation coefficient in cloud fraction between the two altitude levels. This occurs when the clouds are deeper than would be expected at random (i.e. for exponentially distributed cloud depths).

2014 ◽  
Vol 14 (7) ◽  
pp. 9801-9813 ◽  
Author(s):  
I. Astin ◽  
L. Di Girolamo

Abstract. The cloud overlap parameter alpha relates the combined cloud fraction between two altitude levels in a grid box to the cloud fraction as derived under the maximum and random overlap assumptions. In a number of published studies in this and other journals it is found that alpha tends to increase with increasing scale. In this technical note, we investigate this analytically by considering what happens to alpha when two grid boxes are merged to give a grid box with twice the area. Assuming that alpha depends only on scale then, between any two fixed altitudes, there will be a linear relationship between the values of alpha at the two scales. We illustrate this by finding the relationship when cloud cover fractions are assumed to be uniformly distributed, but with varying degrees of horizontal and vertical correlation. Based on this, we conclude that alpha increases with scale if its value is less than the vertical correlation coefficient in cloud fraction between the two altitude levels. This occurs when the cloud are deeper than would be expected at random (i.e. for exponentially distributed cloud depths). However, the degree of scale-dependence is controlled by the horizontal correlation coefficient in the cloud fraction between adjacent grid boxes, being greatest when this correlation is zero. Trivially, there is no scale-dependence when this correlation is one. The observed, generally strong, scale-dependence would thus indicate that the horizontal correlation is small.


2016 ◽  
Vol 29 (22) ◽  
pp. 8129-8149 ◽  
Author(s):  
Catherine M. Naud ◽  
James F. Booth ◽  
Anthony D. Del Genio

Abstract Using NASA Aqua MODIS and AIRS data, the relationship between low-level cloud cover (cloud top below the 700-hPa level) and boundary layer stability is explored in post-cold-frontal conditions. A linear relationship is found between seasonal cloud cover and two separate measures of inversion strength, the lower-tropospheric stability (LTS) and the estimated inversion strength (EIS), for two specific regions in the North Atlantic and Pacific in quiescent and weakly subsiding conditions. The relationship barely changes when considering dynamically active and subsiding post-cold-frontal conditions for the same regions. To explore the generality of this result and increase sample size, cold-front-centered composites of cloud cover and stability are constructed. The Northern and Southern Hemisphere seasonal cloud cover and stability distributions in the post-cold-frontal regions are then compared. A fairly good correlation between cloud cover and EIS is found in both hemispheres across all seasons, suggesting that a linear relationship between cloud cover and inversion strength proposed for quiescent conditions exists also in more dynamically active subsiding post-cold-frontal conditions. However, for a given season and hemisphere, the correlation between cloud cover and EIS degrades in post-cold-frontal regions, especially in the Northern Hemisphere. At these scales, other large-scale factors tend to correlate better with cloud cover.


2018 ◽  
Vol 18 (10) ◽  
pp. 7329-7343 ◽  
Author(s):  
Jiming Li ◽  
Qiaoyi Lv ◽  
Bida Jian ◽  
Min Zhang ◽  
Chuanfeng Zhao ◽  
...  

Abstract. Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007–2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into account in the parameterization of decorrelation length scale L in order to further improve the calculation of the radiative budget and the prediction of climate change over the TP in the atmospheric models.


1982 ◽  
Vol 14 (2) ◽  
pp. 43-49
Author(s):  
Stephen E. Miller

The literature of industrial organization is replete with analyses of the relationship between seller concentration and market performance. Most researchers have hypothesized a continuous linear relationship between profitability and concentration and have estimated that relationship accordingly.


2006 ◽  
Vol 326-328 ◽  
pp. 237-240 ◽  
Author(s):  
Yasushi Sasaki ◽  
Manabu Iguchi ◽  
Mitsutaka Hino

Based on the relationship between quantified blurring degree of Kikuchi bands obtained by an electron backscattering diffraction (EBSD) technique and macroscopic strains measured by a strain gauge, the local compression strain SEBSD in sinter ore has been evaluated under various conditions. There is a good linear relationship between the SEBSD and the strains measured by a strain gauge. The local strain SEBSD evaluated by EBSD patterns can be used as an index of local strains.


1982 ◽  
Vol 62 (1) ◽  
pp. 183-188 ◽  
Author(s):  
R. RIOUX

Barley (Hordeum vulgare L. ’Champlain’) was grown with quackgrass (Agropyron repens (L.) Beauv.) at various densities for 3 yr. According to the regression analysis, a linear relation is appropriate to describe the relationship between yield of barley and biomass or density of quackgrass. A greater proportion of yield variability was explained by density (64%) than by biomass (40%). Density is then a better criterion than biomass to predict yield lost in barley. The linear relationship between barley yield and the shoot density of quackgrass is estimated by the following equation: yield barley = 345.3–0.5682 dens, quackgrass. An increase of 10 shoots/m2 in the mean density of quackgrass resulted in a mean loss of 6 g/m2 in the yield of barley.


2011 ◽  
Vol 11 (12) ◽  
pp. 5557-5567 ◽  
Author(s):  
L. Oreopoulos ◽  
P. M. Norris

Abstract. An analysis of cloud overlap based on high temporal and vertical resolution retrievals of cloud condensate from a suite of ground instruments is performed at a mid-latitude atmospheric observation facility. Two facets of overlap are investigated: cloud fraction overlap, expressed in terms of a parameter "α" indicating the relative contributions of maximum and random overlap, and overlap of horizontal distributions of condensate, expressed in terms of the correlation coefficient of condensate ranks. The degree of proximity to the random and maximum overlap assumptions is also expressed in terms of a decorrelation length, a convenient scalar parameter for overlap parameters assumed to decay exponentially with separation distance. Both cloud fraction overlap and condensate overlap show significant seasonal variations with a clear tendency for more maximum overlap in the summer months. More maximum overlap is also generally observed when the domain size used to define cloud fractions increases. These tendencies also exist for rank correlations, but are significantly weaker. Hitherto unexplored overlap parameter dependencies are investigated by analyzing mean parameter differences at fixed separation distance within different layers of the atmospheric column, and by searching for possible systematic relationships between alpha and rank correlation. We find that for the same separation distance the overlap parameters are significantly distinct in different atmospheric layers, and that random cloud fraction overlap is usually associated with more randomly overlapped condensate ranks.


2017 ◽  
Author(s):  
Jiming Li ◽  
Qiaoyi Lv ◽  
Bida Jian ◽  
Min Zhang ◽  
Chuanfeng Zhao ◽  
...  

Abstract. The accurate representation of cloud vertical overlap in atmospheric models is particularly significant for predicting the total cloud cover and for the calculations related to the radiative budget in these models. However, it has received too little attention due to the limited observation, especially over the Tibetan Plateau (TP). In this study, 4 years (2007–2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis product were analyzed to examine the seasonal and zonal variations of cloud overlap properties over the TP region, and evaluate the effect of atmospheric dynamics on cloud overlap. Unique characteristics of cloud overlap over the TP have been found. The statistical results show that the random overlap assumption slightly underestimates the total cloud coverage for discontinuous cloud layers over the TP, whereas the overlap parameter α for continuous cloud sharply decrease from maximum to random overlap with an increase of layer distance, eventually trending towards a minimal overlap (e.g., negative α values) as the cloud layer separation distance exceeds 1.5 km. Compared with the global averaged cloud overlap characteristics, the proportion of minimal overlap over the TP is significant high (about 41 %). It may be associated with the unique topographical forcing and thermos-dynamical environment of the TP. As a result, we propose a valid scheme for quantifying the degree of cloud overlap over the TP through a linear combination of the maximum and minimum overlap, and further parameterize decorrelation length scale L as a function of wind shear and atmospheric stability. Compared with other parameterizations, the new scheme reduces the bias between predicted and observed cloud covers. These results thus indicate that effects of wind shear and atmospheric stability on cloud overlap should both be taken into account in the parameterization of overlap parameter to improve the simulation of total cloud cover in models.


2020 ◽  
Author(s):  
Zhongwen Jin ◽  
Yuwei Meng ◽  
Rongdong Yu ◽  
Ruochen Huang ◽  
Mingyang Lu ◽  
...  

<p>Previously, a conductivity invariance phenomena (CIP) has been discovered – at a certain lift-off, the inductance change of the sensor due to a test sample is immune to conductivity variations, i.e. the inductance – lift-off curve passes through a common point at a certain lift-off, termed as conductivity invariance lift-off. However, this conductivity invariance lift-off is fixed for a particular sensor setup, which is not convenient for various sample conditions. In this paper, we propose using two parameters in the coil design – the horizontal and vertical distances between the transmitter and the receiver to control the conductivity invariance lift-off. The relationship between these two parameters and the conductivity invariance lift-off is investigated by simulation and experiments and it has been found that there is an approximate linear relationship between these two parameters and the conductivity invariance lift-off. This is useful for applications where the measurements have restrictions on lift-off, e.g. uneven coating thickness which limits the range of the lift-off of probe during the measurements. Therefore, based on this relationship, it can be easier to adjust the configuration of the probe for a better inspection of the test samples.</p>


Author(s):  
Chu Thi Thu Huong ◽  
Bui Thi Hop ◽  
Tran Dinh Linh ◽  
Vu Thanh Hang

Abstract: Based on the data that has the resolution is 1,00×1,00of the Outgoing Longwave Radiation (OLR) and the cloud cover from NCEP/NCAR in the 1981 – 2012 period, the relationship between the cloud cover and the OLR in the Southern of Vietnam wasinvestigated when analyze and compare the spatial distribution, temporal evolution and their correlation. The results show that the characteristics of the spatial distribution and the year cycle of cloud cover and OLR are inversely correlated. The region or time that the cloud cover is great, the OLR is small and vice versa. In the Southern of Vietnam, the OLR value isgreatest(or smallest) in the dry (or rainy) season and in the El-Nino (La-Nina) years. In addition, during the 1981-2012period, the OLR in this region shows a downward trend about 3.6 W/m2/decade, while the cloud cover tends to increase by 0.2%/decade. Keywords: Cloud cover, Outgoing Longwave Radiation, the Southern of Vietnam.


Sign in / Sign up

Export Citation Format

Share Document