scholarly journals What is the real role of iron oxides in the optical properties of dust aerosols?

2015 ◽  
Vol 15 (21) ◽  
pp. 12159-12177 ◽  
Author(s):  
X. L. Zhang ◽  
G. J. Wu ◽  
C. L. Zhang ◽  
T. L. Xu ◽  
Q. Q. Zhou

Abstract. Iron oxide compounds constitute an important component of mineral dust aerosols. Several previous studies have shown that these minerals are strong absorbers at visible wavelengths and thus that they play a critical role in the overall climate perturbation caused by dust aerosols. When compiling a database of complex refractive indices of possible mineral species of iron oxides to study their optical properties, we found that uniformly continuous optical constants for a single type of iron oxide in the wavelength range between 0.2 and 50 μm are very scarce, and that the use of hematite to represent all molecular or mineral iron-oxides types is a popular hypothesis. However, the crucial problem is that three continuous data sets for complex refractive indices of hematite are employed in climate models, but there are significant differences between them. Thus, the real role of iron oxides in the optical properties of dust aerosols becomes a key scientific question, and we address this problem by considering different refractive indices, size distributions and more logical weight fractions and mixing states of hematite. Based on the microscopic observations, a semi-external mixture that employs an external mixture between Fe aggregates and other minerals and partly internal mixing between iron oxides and aluminosilicate particles is advised as the optimal approximation. The simulations demonstrate that hematite with a spectral refractive index from Longtin et al. (1988) shows approximately equal absorbing capacity to the mineral illite over the whole wavelength region from 0.55 to 2.5 μm, and only enhances the optical absorption of aerosol mixture at λ < 0.55 μm. Using the data set from Querry (1985) may overestimate the optical absorption of hematite at both visible and near-infrared wavelengths. More laboratory measurements of the refractive index of iron oxides, especially for hematite and goethite in the visible spectrum, should therefore be taken into account when assessing the effect of mineral dust on climate forcing.

2015 ◽  
Vol 15 (4) ◽  
pp. 5619-5662 ◽  
Author(s):  
X. L. Zhang ◽  
G. J. Wu ◽  
C. L. Zhang ◽  
T. L. Xu ◽  
Q. Q. Zhou

Abstract. Iron oxides compounds constitute an important component of mineral dust aerosol. Several previous studies have shown that these minerals are strong absorbers at visible wavelengths and thus that they play a critical role in the overall climate forcing caused by dust aerosol. When compiling a database of complex refractive indices of possible mineral species of iron-oxides to study their optical properties, we found that uniformly continuous optical constants for a single type of iron-oxides in the wavelength range between 0.2 and 50 μm is very scarce and that the use of hematite to represent all molecular or mineral iron-oxides types is a popular hypothesis. However, the crucial problem is that three continuous datasets for complex refractive indices of hematite are employed in climate models, but there are significant differences between them. Thus, the real role of iron-oxides in the optical properties of dust aerosols becomes a key scientific question, and we address this problem by considering different refractive indices, size distributions, and more logical weight fractions and mixing states of hematite. Based on the microscopic observations, a semi-external mixture that employs an external mixture between Fe-aggregates and other minerals and partly internal mixing between iron-oxides and aluminosilicate particles is advised as the optimal approximation. The simulations demonstrate that hematite with a spectral refractive indices from Longtin et al. (1988) shows approximately equal absorbing capacity to the mineral illite over the whole wavelength region from 0.55 to 2.5 μm, and only enhances the optical absorption of aerosol mixture at λ < 0.55 μm. Using the dataset from Querry (1985) may overestimate the optical absorption of hematite at both visible and near-infrared wavelengths. More laboratory measurements of the refractive index of iron-oxides, especially for hematite and goethite in the visible spectrum, should therefore be taken into account when assessing the effect of mineral dust on climate forcing.


2021 ◽  
Author(s):  
Sujung Go ◽  
Alexei Lyapustin ◽  
Gregory L. Schuster ◽  
Myungje Choi ◽  
Paul Ginoux ◽  
...  

Abstract. The iron-oxide content of dust in the atmosphere and most notably its apportionment between hematite (α-Fe2O3) and goethite (α-FeOOH) are key determinants in quantifying dust's light absorption, its top of atmosphere UV radiances used for dust monitoring, and ultimately shortwave dust direct radiative effects (DRE). Hematite and goethite column mass concentrations and iron-oxide mass fractions of total dust mass concentration were retrieved from the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) measurements in the ultraviolet–visible (UV–Vis) channels. The retrievals were performed for dust-identified aerosol plumes using aerosol optical depth (AOD) and spectral imaginary refractive index provided by the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm over six continental regions (North America, North Africa, West Asia, Central Asia, East Asia, and Australia). The dust particles are represented as an internal mixture of non-absorbing host and absorbing hematite and goethite. We use the Maxwell–Garnett effective medium approximation with carefully selected complex refractive indices of hematite and goethite that produce mass fractions of iron oxides species consistent with in situ values found in the literature to derive the hematite and goethite volumetric/mass concentrations from MAIAC EPIC products. We compared the retrieved hematite and goethite concentrations with in situ dust aerosol mineralogical content measurements, as well as with published data. Our data display variations within the published range of hematite, goethite, and iron-oxide mass fractions for pure mineral dust cases. A specific analysis is presented for 15 sites over the main dust source regions. Sites in the central Sahara, Sahel, and Middle East exhibit a greater temporal variability of iron oxides relative to other sites. Niger site (13.52° N, 2.63° E) is dominated by goethite over Harmattan season with median of ~2 weight percentage (wt.%) of iron-oxide. Saudi Arabia site (27.49° N, 41.98° E) over Middle East also exhibited surge of goethite content with the beginning of Shamal season. The Sahel dust is richer in iron-oxide than Saharan and northern China dust except in Summer. The Bodélé Depression area shows a distinctively lower iron-oxide concentration (~1 wt. %) throughout the year. Finally, we show that EPIC data allow to constrain the hematite refractive index. Specifically, we select 5 out of 13 different number of hematite refractive indices widely variable in published laboratory studies by constraining the iron-oxide mass ratio to the known measured values. Provided climatology of hematite and goethite mass fractions across main dust regions of the Earth will be useful for dust shortwave DRE studies and climate modeling. 


2019 ◽  
Vol 19 (24) ◽  
pp. 15503-15531 ◽  
Author(s):  
Claudia Di Biagio ◽  
Paola Formenti ◽  
Yves Balkanski ◽  
Lorenzo Caponi ◽  
Mathieu Cazaunau ◽  
...  

Abstract. The optical properties of airborne mineral dust depend on its mineralogy, size distribution, and shape, and they might vary between different source regions. To date, large differences in refractive index values found in the literature have not been fully explained. In this paper we present a new dataset of complex refractive indices (m=n-ik) and single-scattering albedos (SSAs) for 19 mineral dust aerosols over the 370–950 nm range in dry conditions. Dust aerosols were generated from natural parent soils from eight source regions (northern Africa, Sahel, Middle East, eastern Asia, North and South America, southern Africa, and Australia). They were selected to represent the global-scale variability of the dust mineralogy. Dust was resuspended into a 4.2 m3 smog chamber where its spectral shortwave scattering (βsca) and absorption (βabs) coefficients, number size distribution, and bulk composition were measured. The complex refractive index was estimated by Mie calculations combining optical and size data, while the spectral SSA was directly retrieved from βsca and βabs measurements. Dust is assumed to be spherical in the whole data treatment, which introduces a potential source of uncertainty. Our results show that the imaginary part of the refractive index (k) and the SSA vary widely from sample to sample, with values for k in the range 0.0011 to 0.0088 at 370 nm, 0.0006 to 0.0048 at 520 nm, and 0.0003 to 0.0021 at 950 nm, as well as values for SSA in the range 0.70 to 0.96 at 370 nm, 0.85 to 0.98 at 520 nm, and 0.95 to 0.99 at 950 nm. In contrast, the real part of the refractive index (n) is mostly source (and wavelength) independent, with an average value between 1.48 and 1.55. The sample-to-sample variability in our dataset of k and SSA is mostly related to differences in the dust iron content. In particular, a wavelength-dependent linear relationship is found between the magnitude of k and SSA and the mass concentrations of both iron oxide and total elemental iron, with iron oxide better correlated than total elemental iron with both k and SSA. The value of k was found to be independent of size. When the iron oxide content exceeds 3 %, the SSA linearly decreases with an increasing fraction of coarse particles at short wavelengths (< 600 nm). Compared to the literature, our values for the real part of the refractive index and SSA are in line with past results, while we found lower values of k compared to most of the literature values currently used in climate models. We recommend that source-dependent values of the SW spectral refractive index and SSA be used in models and remote sensing retrievals instead of generic values. In particular, the close relationships found between k or SSA and the iron content in dust enable the establishment of predictive rules for spectrally resolved SW absorption based on particle composition.


2019 ◽  
Author(s):  
Claudia Di Biagio ◽  
Paola Formenti ◽  
Yves Balkanski ◽  
Lorenzo Caponi ◽  
Mathieu Cazaunau ◽  
...  

Abstract. The optical properties of airborne mineral dust depend on its mineralogy, size distribution, shape, and might vary between different source regions. To date, large differences in refractive index values found in the literature have not been fully explained. In this paper we present a new dataset of complex refractive indices (m=n‒ik) and single scattering albedos (SSA) for 19 mineral dust aerosols over the 370–950 nm range in dry conditions. Dust aerosols were generated from natural parent soils from eight source regions (Northern Africa, Sahel, Middle East, Eastern Asia, North and South America, Southern Africa, and Australia). These were selected to represent the global scale variability of the dust mineralogy. Dust was re‒suspended into a 4.2 m3 smog chamber where its spectral shortwave scattering (βsca) and absorption (βabs) coefficients, number size distribution, and bulk composition were measured. The complex refractive index was estimated by Mie calculations combining optical and size data, while the spectral SSA was directly retrieved from βsca and βabs measurements. Our results show that the imaginary part of the refractive index (k) and the SSA largely vary from sample to sample, with values for k in the range 0.001 to 0.009 at 370 nm and 0.0003 to 0.002 at 950 nm, and values for SSA in the range 0.70 to 0.96 at 370 nm and 0.95 to 0.99 at 950 nm. In contrast, the real part of the refractive index (n) is mostly source (and wavelength) independent, with an average value between 1.48 and 1.55. The sample‒to‒sample variability in our dataset of k and SSA is mostly related to differences in the dust’s iron content. In particular, a wavelength‒dependent linear relationship is found between the magnitude of k and SSA and the mass concentrations of both iron oxide and total elemental iron. As an intrinsic property of matter, k is independent of size. When the iron oxide content exceeds > 3 %, the SSA linearly decreases with increasing fraction of coarse particles at short wavelengths (


2015 ◽  
Vol 15 (9) ◽  
pp. 13607-13656 ◽  
Author(s):  
G. L. Schuster ◽  
O. Dubovik ◽  
A. Arola

Abstract. We describe a method of using the aerosol robotic network (AERONET) size distributions and complex refractive indices to retrieve the relative proportion of carbonaceous aerosols and iron oxide minerals. We assume that soot carbon has a spectrally flat refractive index, and that enhanced imaginary indices at the 440 nm wavelength are caused by brown carbon or hematite. Carbonaceous aerosols can be separated from dust in imaginary refractive index space because 95% of biomass burning aerosols have imaginary indices greater than 0.0042 at the 675–1020 nm wavelengths, and 95% of dust has imaginary refractive indices of less than 0.0042 at those wavelengths. However, mixtures of these two types of particles can not be unambiguously partitioned on the basis of optical properties alone, so we also separate these particles by size. Regional and seasonal results are consistent with expectations. Monthly climatologies of fine mode soot carbon are less than 1.0% by volume for West Africa and the Middle East, but the southern Africa and South America biomass burning sites have peak values of 3.0 and 1.7%. Monthly-averaged fine mode brown carbon volume fractions have a peak value of 5.8% for West Africa, 2.1% for the Middle East, 3.7% for southern Africa, and 5.7% for South America. Monthly climatologies of iron oxide volume fractions show little seasonal variability, and range from about 1.1 to 1.7% for coarse mode aerosols in all four study regions. Finally, our sensitivity study indicates that the soot carbon retrieval is not sensitive to the component refractive indices or densities assumed for carbonaceous and iron oxide aerosols, and differs by only 15.4% when these parameters are altered from our chosen baseline values. The associated soot carbon absorption aerosol optical depth (AAOD) does not vary at all when these parameters are altered, however, because the retrieval is constrained by the AERONET optical properties.


2006 ◽  
Vol 6 (5) ◽  
pp. 8383-8419 ◽  
Author(s):  
Y. Balkanski ◽  
M. Schulz ◽  
T. Claquin ◽  
S. Guibert

Abstract. Modelling studies and satellite retrievals do not agree on the amplitude and/or sign of the direct radiative perturbation from dust. Modelling studies have systematically overpredicted mineral dust absorption compared to estimates based upon satellite retrievals. In this paper we first point out the source of this discrepancy, which originates from the shortwave refractive index of dust used in models. The imaginary part of the refractive index retrieved from AERONET over the range 300 to 700 nm is 3 to 6 times smaller than that used previously to model dust. We attempt to constrain these refractive indices using a mineralogical database and varying the abundances of iron oxides (the main absorber in the visible). We first consider the optically active mineral constituents of dust and compute the refractive indices from internal and external mixtures of minerals with relative amounts encountered in parent soils. We then compute the radiative perturbation due to mineral aerosols for internally and externally mixed minerals for 3 different hematite contents, 0.9%, 1.5% and 2.7% by volume. These amounts represent low, central and high content of iron oxides in dust determined from the mineralogical database. Based upon values of the refractive index retrieved from AERONET, we show that the best agreement between 440 and 1020 nm occurs for mineral dust internally mixed with 1.5% volume weighted hematite. This representation of mineral dust allows us to compute, using a general circulation model, a new global estimate of mineral dust perturbation between −0.40 and −0.21 Wm−2. This range is determined from both optical properties and varying dust size distribution. The broadband shortwave effect varies from −0.78 to −0.53 Wm−2 and the longwave effect between +0.29 and +0.38 Wm−2. The 24-h average atmospheric heating by mineral dust during summer over the tropical Atlantic region (15° N–25° N; 45° W–15° W) is in the range +22 to +32 Wm−2 τ−1 which compares well with the 30±4 Wm−2 τ−1 measured by Li et al. (2004) over that same region. The refractive indices from Patterson et al. (1977) and from Volz (1973) overestimate by a factor of 2 the energy absorbed in the column during summer over the same region.


2007 ◽  
Vol 7 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Y. Balkanski ◽  
M. Schulz ◽  
T. Claquin ◽  
S. Guibert

Abstract. Modelling studies and satellite retrievals do not agree on the amplitude and/or sign of the direct radiative perturbation from dust. Modelling studies have systematically overpredicted mineral dust absorption compared to estimates based upon satellite retrievals. In this paper we first point out the source of this discrepancy, which originates from the shortwave refractive index of dust used in models. The imaginary part of the refractive index retrieved from AERONET over the range 300 to 700 nm is 3 to 6 times smaller than that used previously to model dust. We attempt to constrain these refractive indices using a mineralogical database and varying the abundances of iron oxides (the main absorber in the visible). We first consider the optically active mineral constituents of dust and compute the refractive indices from internal and external mixtures of minerals with relative amounts encountered in parent soils. We then compute the radiative perturbation due to mineral aerosols for internally and externally mixed minerals for 3 different hematite contents, 0.9%, 1.5% and 2.7% by volume. These constant amounts of hematite allow bracketing the influence of dust aerosol when it is respectively an inefficient, standard and a very efficient absorber. These values represent low, central and high content of iron oxides in dust determined from the mineralogical database. Linke et al. (2006) determined independently that iron-oxides represent 1.0 to 2.5% by volume using x-Ray fluorescence on 4 different samples collected over Morocco and Egypt. Based upon values of the refractive index retrieved from AERONET, we show that the best agreement between 440 and 1020 nm occurs for mineral dust internally mixed with 1.5% volume weighted hematite. This representation of mineral dust allows us to compute, using a general circulation model, a new global estimate of mineral dust perturbation between –0.47 and –0.24 Wm−2 at the top of the atmosphere, and between –0.81 and –1.13 Wm−2 at the surface for both shortwave and longwave wavelengths. The anthropogenic dust fraction is thought to account for between 10 and 50% of the total dust load present in the atmosphere. We estimate a top of the atmosphere forcing between –0.03 and –0.25 Wm−2, which is markedly different that the IPCC range of –0.6 to +0.4 Wm−2 (IPCC, 2001). The 24-h average atmospheric heating by mineral dust during summer over the tropical Atlantic region (15° N–25° N; 45° W–15° W) is in the range +22 to +32 Wm−2 τ−1 which compares well with the 30±4 Wm−2 τ−1 measured by Li et al. (2004) over that same region. The refractive indices from Patterson et al. (1977) and from Volz (1973) overestimate by a factor of 2 the energy absorbed in the column during summer over the same region. This discrepancy is due to too large absorption in the visible but we could not determine if this is linked to the sample studied by Patterson et al. (1997) or to the method used in determining the refractive index.


2010 ◽  
Vol 10 (6) ◽  
pp. 3081-3098 ◽  
Author(s):  
C. L. McConnell ◽  
P. Formenti ◽  
E. J. Highwood ◽  
M. A. J. Harrison

Abstract. Much uncertainty in the value of the imaginary part of the refractive index of mineral dust contributes to uncertainty in the radiative effect of mineral dust in the atmosphere. A synthesis of optical, chemical and physical in-situ aircraft measurements from the DODO experiments during February and August 2006 are used to calculate the refractive index mineral dust encountered over West Africa. Radiative transfer modeling and measurements of broadband shortwave irradiance at a range of altitudes are used to test and validate these calculations for a specific dust event on 23 August 2006 over Mauritania. Two techniques are used to determine the refractive index: firstly a method combining measurements of scattering, absorption, size distributions and Mie code simulations, and secondly a method using composition measured on filter samples to apportion the content of internally mixed quartz, calcite and iron oxide-clay aggregates, where the iron oxide is represented by either hematite or goethite and clay by either illite or kaolinite. The imaginary part of the refractive index at 550 nm (ni550) is found to range between 0.0001 i to 0.0046 i, and where filter samples are available, agreement between methods is found depending on mineral combination assumed. The refractive indices are also found to agree well with AERONET data where comparisons are possible. ni550 is found to vary with dust source, which is investigated with the NAME model for each case. The relationship between both size distribution and ni550 on the accumulation mode single scattering albedo at 550 nm (ω0550) are examined and size distribution is found to have no correlation to ω0550, while ni550 shows a strong linear relationship with ω0550. Radiative transfer modeling was performed with different models (Mie-derived refractive indices, but also filter sampling composition assuming both internal and external mixing). Our calculations indicate that Mie-derived values of ni550 and the externally mixed dust where the iron oxide-clay aggregate corresponds to the goethite-kaolinite combination result in the best agreement with irradiance measurements. The radiative effect of the dust is found to be very sensitive to the mineral combination (and hence refractive index) assumed, and to whether the dust is assumed to be internally or externally mixed.


2014 ◽  
Vol 14 (20) ◽  
pp. 11093-11116 ◽  
Author(s):  
C. Di Biagio ◽  
H. Boucher ◽  
S. Caquineau ◽  
S. Chevaillier ◽  
J. Cuesta ◽  
...  

Abstract. Experimental estimations of the infrared refractive index of African mineral dust have been retrieved from laboratory measurements of particle transmission spectra in the wavelength range 2.5–25 μm. Five dust samples collected at Banizoumbou (Niger) and Tamanrasset (Algeria) during dust events originated from different Western Saharan and Sahelian areas have been investigated. The real (n) and imaginary (k) parts of the refractive index obtained for the different dust samples vary in the range 1.1–2.7 and 0.05–1.0, respectively, and are strongly sensitive to the mineralogical composition of the particles, especially in the 8–12 and 17–25 μm spectral intervals. Dust absorption is controlled mainly by clays (kaolinite, illite, smectite) and, to a lesser extent, by quartz and calcium-rich minerals (e.g. calcite, gypsum). Significant differences are obtained when comparing our results with existing experimental estimations available in the literature, and with the values of the OPAC (Optical Properties of Aerosols and Clouds) database. The different data sets appear comparable in magnitude, with our values of n and k falling within the range of variability of past studies. However, literature data fail in accurately reproducing the spectral signatures of the main minerals, in particular clays, and they significantly overestimate the contribution of quartz. Furthermore, the real and the imaginary parts of the refractive index from some literature studies are found not to verify the Kramers–Kronig relations, thus being theoretically incorrect. The comparison between our results, from western Africa, and literature data, from different locations in Europe, Africa, and the Caribbean, nonetheless, confirms the expected large variability of the dust infrared refractive index. This highlights the necessity for an extended systematic investigation of dust properties at infrared wavelengths. For the five analysed dust samples, aerosol intensive optical properties relevant to radiative transfer (mass extinction efficiency, kext, single scattering albedo, ω, and asymmetry factor, g) have been calculated, by using the Mie theory, based on the estimated refractive index and measured particle size distribution. The optical properties show a large sample-to-sample variability, with kext, ω, and g varying in the range 0.05–0.35, 0.25–1.0, and 0.05–0.75. This variability is expected to significantly impact satellite retrievals of atmospheric and surface parameters (e.g. from the Infrared Atmospheric Sounding Interferometer, IASI) and estimates of the dust radiative forcing.


2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


Sign in / Sign up

Export Citation Format

Share Document