scholarly journals Dicarboxylic acids, oxoacids, benzoic acid, <i>α</i>-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

2016 ◽  
Vol 16 (8) ◽  
pp. 5263-5282 ◽  
Author(s):  
Dhananjay K. Deshmukh ◽  
Kimitaka Kawamura ◽  
Manuel Lazaar ◽  
Bhagawati Kunwar ◽  
Suresh K. R. Boreddy

Abstract. Size-segregated aerosols (nine stages from < 0.43 to > 11.3 µm in diameter) were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2–C12), ω-oxoacids (ωC2–ωC9), pyruvic acid, benzoic acid, and α-dicarbonyls (C2–C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC), and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl−, NO3−, SO42−, and MSA−). In all the size-segregated aerosols, oxalic acid (C2) was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2–C5), ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65–1.1 µm) whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at coarse mode (3.3–4.7 µm). Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2–C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r =  0.86–0.99), indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r =  0.82–0.95) further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r =  0.85–0.96), which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

2015 ◽  
Vol 15 (18) ◽  
pp. 26509-26554 ◽  
Author(s):  
D. K. Deshmukh ◽  
K. Kawamura ◽  
M. Lazaar ◽  
B. Kunwar ◽  
S. K. R. Boreddy

Abstract. Size-segregated aerosols (9-stages from < 0.43 to > 11.3 μm in diameter) were collected at Cape Hedo, Okinawa in spring 2008 and analyzed for water-soluble diacids (C2–\\C12), ω-oxoacids (ωC2–ωC9), pyruvic acid, benzoic acid and α-dicarbonyls (C2–C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC) and major ions. In all the size-segregated aerosols, oxalic acid (C2) was found as the most abundant species followed by malonic and succinic acids whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2–C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65–1.1 μm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3–4.7 μm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. These results imply that water-soluble species in the marine aerosols could act as cloud condensation nuclei (CCN) to develop the cloud cover over the western North Pacific Rim. The organic species are likely produced by a combination of gas-phase photooxidation, and aerosol-phase or in-cloud processing during long-range transport. The coarse mode peaks of malonic and succinic acids were obtained in the samples with marine air masses, suggesting that they may be associated with the reaction on sea salt particles. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest their production by photooxidation of biogenic unsaturated fatty acids via heterogeneous reactions on sea salt particles.


2010 ◽  
Vol 10 (4) ◽  
pp. 10889-10923 ◽  
Author(s):  
M. Claeys ◽  
I. Kourtchev ◽  
V. Pashynska ◽  
G. Vas ◽  
R. Vermeylen ◽  
...  

Abstract. Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondônia, Brazil) using a High-Volume dichotomous sampler (HVDS) and a Micro-Orifice Uniform Deposit Impactor (MOUDI). The samplings were conducted within the framework of the LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazônia – Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate) campaign, which took place from 9 September till 14 November 2002, spanning the late dry season (biomass burning), the transition period, and the onset of the wet season (clean conditions). In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including: (a) levoglucosan, a tracer for biomass burning, (b) malic acid, a tracer for the oxidation of semivolatile carboxylic acids, (c) tracers for secondary organic aerosol (SOA) from isoprene, i.e., the 2-methyltetrols (2-methylthreitol and 2-methylerythritol) and the C5-alkene triols [2-methyl-1,3,4-trihydroxy-1-butene (cis and trans) and 3-methyl-2,3,4-trihydroxy-1-butene], and (d) sugar alcohols (arabitol, mannitol, and erythritol), tracers for fungal spores. The results obtained for levoglucosan are covered first with the aim to address its contrasting behavior with that of malic acid, the isoprene SOA tracers, and the fungal spore tracers. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM2.5 size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 μg m−3 and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m−3 during the dry period versus 157 ng m−3 during the transition period and 52 ng m−3 during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern: while the 2-methyltetrols were mainly associated with the fine mode during all periods, malic acid was prevalent in the fine mode only during the dry and transition periods, while it was dominant in the coarse mode during the wet period, consistent with different formation processes. The sum of arabitol, mannitol, and erythritol in the PM2.5 fraction of the HVDS samples during the dry, transition, and wet periods was, on average, 54 ng m−3, 34 ng m−3, and 27 ng m−3, respectively, and revealed minor day/night variation. The mass size distributions of arabitol and mannitol during all periods showed similar patterns and an association with the coarse mode, consistent with their primary origin. The results show that even under the heavy smoke conditions of the dry period a natural background with contributions from bioaerosols and isoprene SOA can be revealed. The enhancement in isoprene SOA in the dry season is mainly attributed to an increased acidity of the aerosols and a decreased wet deposition.


2014 ◽  
Vol 14 (21) ◽  
pp. 11571-11585 ◽  
Author(s):  
G. H. Wang ◽  
C. L. Cheng ◽  
Y. Huang ◽  
J. Tao ◽  
Y. Q. Ren ◽  
...  

Abstract. A total suspended particulate (TSP) sample was collected hourly in Xi'an, an inland megacity of China near the Loess Plateau, during a dust storm event of 2013 (9 March 18:00−12 March 10:00 LT), along with a size-resolved aerosol sampling and an online measurement of PM2.5. The TSP and size-resolved samples were determined for elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC) and nitrogen (WSON), inorganic ions and elements to investigate chemistry evolution of dust particles. Hourly concentrations of Cl−, NO3−, SO42−, Na+ and Ca2+ in the TSP samples reached up to 34, 12, 180, 72 and 28 μg m−3, respectively, when dust peak arrived over Xi'an. Chemical compositions of the TSP samples showed that during the whole observation period NH4+ and NO3− were linearly correlated with each other (r2=0.76) with a molar ratio of 1 : 1, while SO42− and Cl− were well correlated with Na+, Ca2+, Mg2+ and K+ (r2 > 0.85). Size distributions of NH4+ and NO3− presented a same pattern, which dominated in the coarse mode (> 2.1 μm) during the event and predominated in the fine mode (< 2.1 μm) during the non-event. SO42− and Cl− also dominated in the coarse mode during the event hours, but both exhibited two equivalent peaks in both the fine and the coarse modes during the non-event, due to the fine-mode accumulations of secondarily produced SO42− and biomass-burning-emitted Cl- and the coarse-mode enrichments of urban soil-derived SO42− and Cl−. Linear fit regression analysis further indicated that SO42− and Cl− in the dust samples possibly exist as Na2SO4, CaSO4 and NaCl, which directly originated from Gobi desert surface soil, while NH4+ and NO3− in the dust samples exist as NH4NO3. We propose a mechanism to explain these observations in which aqueous phase of dust particle surface is formed via uptake of water vapor by hygroscopic salts such as Na2SO4 and NaCl, followed by heterogeneous formation of nitrate on the liquid phase and subsequent absorption of ammonia. Our data indicate that 54 ± 20% and 60 ± 23% of NH4+ and NO3− during the dust period were secondarily produced via this pathway, with the remaining derived from the Gobi desert and Loess Plateau, while SO42− in the event almost entirely originated from the desert regions. Such cases are different from those in the East Asian continental outflow region, where during Asia dust storm events SO42− is secondarily produced and concentrates in sub-micrometer particles as (NH4)2SO4 and/or NH4HSO4. To the best of our knowledge, the current work for the first time revealed an infant state of the East Asian dust ageing process in the regions near the source, which is helpful for researchers to understand the panorama of East Asian dust ageing process from the desert area to the downwind region.


2018 ◽  
Author(s):  
Xinghua Li ◽  
Junzan Han ◽  
Philip K. Hopke ◽  
Jingnan Hu ◽  
Qi Shu ◽  
...  

Abstract. Humic-like substances (HULIS) are a mixture of high molecular weight, water-soluble organic compounds that are widely distributed in atmospheric aerosol. Their sources are rarely studied quantitatively. Biomass burning is generally accepted as a major primary source of ambient humic-like substances (HULIS) with additional secondary material formed in the atmosphere. However, the present study provides direct evidence that residential coal burning is also a significant source of ambient HULIS, especially in the heating season in northern China based on source measurements, ambient sampling and analysis, and apportionment with source-oriented CMAQ modeling. Emissions tests show that residential coal combustion produces 5 to 24 % of the emitted organic carbon (OC) as HULIS carbon (HULISc). Estimation of primary emissions of HULIS in Beijing indicated that residential biofuel and coal burning contribute about 70 % and 25 % of annual primary HULIS, respectively. Vehicle exhaust, industry, and power plants contributions are negligible. Average concentration of ambient HULIS was 7.5 μg/m3 in atmospheric PM2.5 in urban Beijing and HULIS exhibited obvious seasonal variations with the highest concentrations in winter. HULISc account for 7.2 % of PM2.5 mass, 24.5 % of OC, and 59.5 % of water-soluble organic carbon, respectively. HULIS are found to correlate well with K+, Cl−, sulfate, and secondary organic aerosol suggesting its sources include biomass burning, coal combustion and secondary aerosol formation. Source apportionment based on CMAQ modeling shows residential biofuel and coal burning, secondary formation are important annual sources of ambient HULIS, contributing 57.5 %, 12.3 %, and 25.8 %, respectively.


2021 ◽  
Author(s):  
Kanishtha Dubey ◽  
Shubha Verma

&lt;p&gt;The study investigates the chemical composition and source of aerosol origin at a semi-urban (Kharagpur&amp;#8211;Kgp) and urban (Kolkata&amp;#8211;Kol) region during the period February 2015 to January 2016 and September 2010 to August 2011 respectively. Major water-soluble inorganic aerosols (WSII) were determined using Ion chromatography and carbonaceous aerosols (CA) using OC&amp;#8211;EC analyser. A multivariate factor analysis Positive Matrix Factorization (PMF) was used in resolving source of aerosols at the study locations. Seasonal analysis of WSII at Kgp and Kol indicated relative dominance of calcium at both the places followed by sodium, chloride, and magnesium ions. Non-sea salt potassium (nss&amp;#8211;K&lt;sup&gt;+&lt;/sup&gt;), a biomass burning tracer was found higher at Kol than at Kgp. Sum of secondary aerosols sulphate (SO&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;2-&lt;/sup&gt;), nitrate (NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;) and ammonium (NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt;) was higher at Kol than Kgp with relative concentration of SO&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;2-&lt;/sup&gt; being higher than NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; at Kgp which was vice-versa at Kol. Examination of carbonaceous aerosols showed three times higher concentration of organic carbon (OC) than elemental carbon (EC) with monthly mean of OC/EC ratio &gt; 2, indicating likely formation of secondary organic carbon formation. Seasonal influence of biomass burning inferred from nss&amp;#8211;K&lt;sup&gt;+&lt;/sup&gt; (OC/EC) ratio relationship indicated dissimilarity in seasonality of biomass burning at Kgp (Kol). PMF resolved sources for Kgp constituted of secondary aerosol emissions, biomass burning, fugitive dust, marine aerosols, crustal dust and emissions from brick kilns while for Kol factors constituted of burning of waste, resuspended paved road dust, coal combustion, sea spray aerosols, vehicular emissions and biomass burning.&lt;/p&gt;


2015 ◽  
Vol 15 (3) ◽  
pp. 1299-1312 ◽  
Author(s):  
Y.-L. Zhang ◽  
R.-J. Huang ◽  
I. El Haddad ◽  
K.-F. Ho ◽  
J.-J. Cao ◽  
...  

Abstract. During winter 2013, extremely high concentrations (i.e., 4–20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) mass concentrations (24 h samples) were found in four major cities in China including Xi'an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic carbon (OC), 14C and biomass-burning marker measurements using Latin hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. Based on 14C measurements of EC fractions (six samples each city), we found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately to heavily polluted days according to particulate matter mass. Despite a significant increase of the absolute mass concentrations of primary emissions from both fossil and non-fossil sources during the heavily polluted events, their relative contribution to TC was even decreased, whereas the portion of SOC was consistently increased at all sites. This observation indicates that SOC was an important fraction in the increment of carbonaceous aerosols during the haze episode in China.


2019 ◽  
Author(s):  
Jing Cai ◽  
Xiangying Zeng ◽  
Guorui Zhi ◽  
Sasho Gligorovski ◽  
Guoying Sheng ◽  
...  

Abstract. Photochemistry plays an important role in the evolution of atmospheric water soluble organic carbon (WSOC), which dissolves into clouds, fogs and aerosol liquid water. In this study, we examined the molecular composition and evolution of a WSOC mixture extracted from fresh biomass burning aerosols upon photolysis, using direct infusion electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and liquid chromatography coupled with mass spectrometry (LC/ESI-HRMS). For comparison, two typical phenolic compounds (i.e., phenol and guaiacol) emitted from lignin pyrolysis in combination with hydrogen peroxide (H2O2) as a typical OH radical precursor, were exposed to simulated sunlight irradiation. The photochemistry of both, the phenols (photo-oxidation) and WSOC mixture (direct photolysis) can produce a series of highly oxygenated compounds which in turn increases the degree of oxidation of organic composition and acidity of the bulk solution. In particular, the LC/ESI-HRMS technique revealed significant photochemical evolution on the WSOC composition, e.g., the photodegradation of low oxygenated species and the formation of highly oxygenated products. We also tentatively compared the mass spectra of photolytic time-profile extract with each other for a more comprehensive description of the photolytic evolution. The calculated average oxygen-to-carbon (O / C) ratios of oxygenated compounds in bulk extract increases from 0.38 ± 0.02 to 0.44 ± 0.02 (mean±standard deviation) while the intensity (S / N)-weighted average O / C (O / Cw) increases from 0.45 ± 0.03 to 0.53 ± 0.06 as the time of irradiation extends from 0 to 12 h. These findings indicate that the water soluble organic fraction of fresh combustion-derived aerosols have the potential to form more oxidized organic matter, accounting for the highly oxygenated nature of atmospheric organic aerosols.


2020 ◽  
Vol 20 (5) ◽  
pp. 3231-3247 ◽  
Author(s):  
Jayant Nirmalkar ◽  
Tsatsral Batmunkh ◽  
Jinsang Jung

Abstract. The impact of biomass burning (BB) on atmospheric particulate matter of <2.5 µm diameter (PM2.5) at Ulaanbaatar, Mongolia, was investigated using an optimized tracer-based approach during winter and spring 2017. Integrated 24 h PM2.5 samples were collected on quartz-fiber filters using a 30 L min−1 air sampler at an urban site in Ulaanbaatar. The aerosol samples were analyzed for organic carbon (OC) and elemental carbon (EC), anhydrosugars (levoglucosan, mannosan, and galactosan), and water-soluble ions. OC was found to be the predominant species, contributing 64 % and 56 % to the quantified aerosol components in PM2.5 in winter and spring, respectively. BB was identified as a major source of PM2.5, followed by dust and secondary aerosols. Levoglucosan ∕ mannosan and levoglucosan ∕ K+ ratios indicate that BB in Ulaanbaatar mainly originated from the burning of softwood. Because of the large uncertainty associated with the quantitative estimation of OC emitted from BB (OCBB), a novel approach was developed to optimize the OC ∕ levoglucosan ratio for estimating OCBB. The optimum OC ∕ levoglucosan ratio in Ulaanbaatar was obtained by regression analysis between OCnon-BB (OCtotal–OCBB) and levoglucosan concentrations that gives the lowest coefficient of determination (R2) and slope. The optimum OC ∕ levoglucosan ratio was found to be 27.6 and 18.0 for winter and spring, respectively, and these values were applied in quantifying OCBB. It was found that 68 % and 63 % of the OC were emitted from BB during winter and spring, respectively. This novel approach can also be applied by other researchers to quantify OCBB using their own chemical measurements. In addition to OCBB, sources of OCnon-BB were also investigated through multivariate correlation analysis. It was found that OCnon-BB originated mainly from coal burning, vehicles, and vegetative emissions.


2019 ◽  
Vol 19 (17) ◽  
pp. 11213-11233 ◽  
Author(s):  
Xiaoyan Liu ◽  
Yan-Lin Zhang ◽  
Yiran Peng ◽  
Lulu Xu ◽  
Chunmao Zhu ◽  
...  

Abstract. Biomass burning can significantly impact the chemical and optical properties of carbonaceous aerosols. Here, the biomass burning impacts were studied during wintertime in a megacity of Nanjing, eastern China. The high abundance of biomass burning tracers such as levoglucosan (lev), mannosan (man), galactosan (gal) and non-sea-salt potassium (nss-K+) was found during the studied period with the concentration ranges of 22.4–1476 ng m−3, 2.1–56.2 ng m−3, 1.4–32.2 ng m−3 and 0.2–3.8 µg m−3, respectively. The significant contribution of biomass burning to water-soluble organic carbon (WSOC; 22.3±9.9 %) and organic carbon (OC; 20.9±9.3 %) was observed in this study. Backward air mass origin analysis, potential emission sensitivity of elemental carbon (EC) and MODIS fire spot information indicated that the elevations of the carbonaceous aerosols were due to the transported biomass-burning aerosols from southeastern China. The characteristic mass ratio maps of lev∕man and lev∕nss-K+ suggested that the biomass fuels were mainly crop residuals. Furthermore, the strong correlation (p < 0.01) between biomass burning tracers (such as lev) and light absorption coefficient (babs) for water-soluble brown carbon (BrC) revealed that biomass burning emissions played a significant role in the light-absorption properties of carbonaceous aerosols. The solar energy absorption due to water-soluble brown carbon and EC was estimated by a calculation based on measured light-absorbing parameters and a simulation based on a radiative transfer model (RRTMG_SW). The solar energy absorption of water-soluble BrC in short wavelengths (300–400 nm) was 0.8±0.4 (0.2–2.3) W m−2 (figures in parentheses represent the variation range of each parameter) from the calculation and 1.2±0.5 (0.3–1.9) W m−2 from the RRTMG_SW model. The absorption capacity of water-soluble BrC accounted for about 20 %–30 % of the total absorption of EC aerosols. The solar energy absorption of water-soluble BrC due to biomass burning was estimated as 0.2±0.1 (0.0–0.9) W m−2, considering the biomass burning contribution to carbonaceous aerosols. Potential source contribution function model simulations showed that the solar energy absorption induced by water-soluble BrC and EC aerosols was mostly due to the regionally transported carbonaceous aerosols from source regions such as southeastern China. Our results illustrate the importance of the absorbing water-soluble brown carbon aerosols in trapping additional solar energy in the low-level atmosphere, heating the surface and inhibiting the energy from escaping the atmosphere.


2015 ◽  
Vol 15 (15) ◽  
pp. 8847-8869 ◽  
Author(s):  
E. F. Mikhailov ◽  
G. N. Mironov ◽  
C. Pöhlker ◽  
X. Chi ◽  
M. L. Krüger ◽  
...  

Abstract. In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia (61° N, 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical compositions of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38 % of particulate matter (PM) in the accumulation mode and coarse mode, respectively. The water-soluble fraction of organic matter was estimated to be 52 and 8 % of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34 % in the accumulation mode vs. ~ 47 % in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4 % RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same relative humidity (RH), starting at ~ 70 %, while efflorescence occurred at different humidities, i.e., at ~ 35 % RH for submicron particles vs. ~ 50 % RH for supermicron particles. This ~ 15 % RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4 % RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv,ws value related to the water-soluble (ws) fraction was estimated to be ~ 0.15 for the accumulation mode and ~ 0.36 for the coarse mode, respectively. The obtained κv,ws for the accumulation mode is in good agreement with earlier data reported for remote sites in the Amazon rain forest (κv &amp;approx; 0.15) and a Colorado mountain forest (κv &amp;approx; 0.16 ). We used the Zdanovskii–Stokes–Robinson (ZSR) mixing rule to predict the chemical composition dependent hygroscopicity, κv,p. The obtained κv,p values overestimate the experimental FDHA-KIM-derived κv,ws by factors of 1.8 and 1.5 for the accumulation and coarse modes, respectively. This divergence can be explained by incomplete dissolution of the hygroscopic inorganic compounds resulting from kinetic limitations due to a sparingly soluble organic coating. The TEM and STXM-NEXAFS results indicate that aged submicron (> 300 nm) and supermicron aerosol particles possess core–shell structures with an inorganic core, and are enriched in organic carbon at the mixed particle surface. The direct FDHA kinetic studies provide a bulk diffusion coefficient of water of ~ 10−12 cm2 s−1 indicating a semi-solid state of the organic-rich phase leading to kinetic limitations of water uptake and release during hydration and dehydration cycles. Overall, the present ZOTTO data set, obtained in the growing season, has revealed a strong influence of organic carbon on the hygroscopic properties of the ambient aerosols. The sparingly soluble organic coating controls hygroscopic growth, phase transitions, and microstructural rearrangement processes. The observed kinetic limitations can strongly influence the outcome of experiments performed on multi-second timescales, such as the commonly applied HTDMA (Hygroscopicity Tandem Differential Mobility Analyzer) and CCNC (Cloud Condensation Nuclei Counter) measurements.


Sign in / Sign up

Export Citation Format

Share Document