scholarly journals Concentrations, composition, and sources of ice-nucleating particles in the Canadian High Arctic during spring 2016

2019 ◽  
Vol 19 (5) ◽  
pp. 3007-3024 ◽  
Author(s):  
Meng Si ◽  
Erin Evoy ◽  
Jingwei Yun ◽  
Yu Xi ◽  
Sarah J. Hanna ◽  
...  

Abstract. Modelling studies suggest that the climate and the hydrological cycle are sensitive to the concentrations of ice-nucleating particles (INPs). However, the concentrations, composition, and sources of INPs in the atmosphere remain uncertain. Here, we report daily concentrations of INPs in the immersion freezing mode and tracers of mineral dust (Al, Fe, Ti, and Mn), sea spray aerosol (Na+ and Cl−), and anthropogenic aerosol (Zn, Pb, NO3-, NH4+, and non-sea-salt SO42-) at Alert, Canada, during a 3-week campaign in March 2016. In total, 16 daily measurements of INPs are reported. The average INP concentrations measured in the immersion freezing mode were 0.005±0.002, 0.020±0.004, and 0.186±0.040 L−1 at −15, −20, and −25 ∘C, respectively. These concentrations are within the range of concentrations measured previously in the Arctic at ground level or sea level. Mineral dust tracers all correlated with INPs at −25 ∘C (correlation coefficient, R, ranged from 0.70 to 0.76), suggesting that mineral dust was a major contributor to the INP population at −25 ∘C. Particle dispersion modelling suggests that the source of the mineral dust may have been long-range transport from the Gobi Desert. Sea spray tracers were anti-correlated with INPs at −25 ∘C (R=-0.56). In addition, INP concentrations at −25 ∘C divided by mass concentrations of aluminum were anti-correlated with sea spray tracers (R=-0.51 and −0.55 for Na+ and Cl−, respectively), suggesting that the components of sea spray aerosol suppressed the ice-nucleating ability of mineral dust in the immersion freezing mode. Correlations between INPs and anthropogenic aerosol tracers were not statistically significant. These results will improve our understanding of INPs in the Arctic during spring.

2018 ◽  
Author(s):  
Meng Si ◽  
Erin Evoy ◽  
Jingwei Yun ◽  
Yu Xi ◽  
Sarah Hanna ◽  
...  

Abstract. Modelling studies suggest that the climate and the hydrological cycle are sensitive to the concentrations of ice-nucleating particles (INPs). However, the concentrations, composition, and sources of INPs in the atmosphere remain uncertain. Here we report daily concentrations of INPs and tracers of mineral dust (Al, Fe, Ti, and Mn), sea spray aerosol (Na+ and Cl−), and anthropogenic aerosol (Zn, Pb, NO3−, NH4+, and non-sea-salt SO42−) at Alert, Canada during a three-week campaign in March 2016. The average INP concentrations measured in the immersion freezing mode were approximately 0.005 ± 0.002 L−1, 0.020 ± 0.004 L−1, and 0.186 ± 0.040 L−1 at −15 ºC, −20 ºC, and −25 ºC, respectively. These concentrations are within the range of concentrations measured previously in the Arctic at ground level or sea level. Mineral dust tracers all correlated with INPs at −25 ºC (correlation coefficient, R, ranged from 0.70 to 0.76), suggesting that mineral dust was a major contributor to the INP population. Particle dispersion modelling suggests that the source of the mineral dust may have been the long-range transported dust from the Gobi desert. Sea spray tracers were anti-correlated with INPs at −25 ºC (R = −0.56). In addition, INP concentrations at −25 ºC divided by mass concentrations of aluminum were anti-correlated with sea spray tracers (R = −0.51 and −0.55 for Na+ and Cl−, respectively), suggesting that the components of sea spray aerosol suppressed the ice-nucleating ability of mineral dust in the immersion freezing mode. Correlations between INPs and anthropogenic aerosol tracers were not statistically significant. These results will improve our understanding of INPs in the Arctic during spring.


2019 ◽  
Vol 19 (2) ◽  
pp. 1027-1039 ◽  
Author(s):  
Victoria E. Irish ◽  
Sarah J. Hanna ◽  
Megan D. Willis ◽  
Swarup China ◽  
Jennie L. Thomas ◽  
...  

Abstract. Ice nucleating particles (INPs) in the Arctic can influence climate and precipitation in the region; yet our understanding of the concentrations and sources of INPs in this region remain uncertain. In the following, we (1) measured concentrations of INPs in the immersion mode in the Canadian Arctic marine boundary layer during summer 2014 on board the CCGS Amundsen, (2) determined ratios of surface areas of mineral dust aerosol to sea spray aerosol, and (3) investigated the source region of the INPs using particle dispersion modelling. Average concentrations of INPs at −15, −20, and −25 ∘C were 0.005, 0.044, and 0.154 L−1, respectively. These concentrations fall within the range of INP concentrations measured in other marine environments. For the samples investigated the ratio of mineral dust surface area to sea spray surface area ranged from 0.03 to 0.09. Based on these ratios and the ice active surface site densities of mineral dust and sea spray aerosol determined in previous laboratory studies, our results suggest that mineral dust is a more important contributor to the INP population than sea spray aerosol for the samples analysed. Based on particle dispersion modelling, the highest concentrations of INPs were often associated with lower-latitude source regions such as the Hudson Bay area, eastern Greenland, or north-western continental Canada. On the other hand, the lowest concentrations were often associated with regions further north of the sampling sites and over Baffin Bay. A weak correlation was observed between INP concentrations and the time the air mass spent over bare land, and a weak negative correlation was observed between INP concentrations and the time the air mass spent over ice and open water. These combined results suggest that mineral dust from local sources is an important contributor to the INP population in the Canadian Arctic marine boundary layer during summer 2014.


2021 ◽  
Author(s):  
Jingwei Yun ◽  
Erin Evoy ◽  
Soleil Worthy ◽  
Melody Fraser ◽  
Daniel Veber ◽  
...  

<p>Ice nucleating particles (INPs) can initiate ice formation in clouds, which has a large impact on the hydrological cycle and radiative budget of the Earth. Constraints on the concentration and composition of INPs are needed to predict ice formation in clouds and hence the climate. Despite previous INP measurements in the Arctic, our understanding of the concentrations, composition, and sources of Arctic INPs is insufficient. Here we report daily concentrations of INPs at Alert, a ground site in the Canadian High Arctic, during October and November of 2018. The contributions of mineral dust and proteinaceous particles to the total INP population were evaluated by testing the responses of the samples to heat and ammonium treatments. Possible source locations of the most effective INPs were investigated using back-trajectory simulations with a Lagrangian particle dispersion model. The results show that the INP concentrations in October were higher than that in November. Combining our results with previous INP measurements at Alert, a seasonal trend was observed for the INP concentrations at -18 °C and -22 °C, with a higher concentration in the late spring, summer and early fall, and a lower concentration in the early spring, late fall, and winter. For the October samples, proteinaceous INPs were detected at T > -21 °C with a fraction of 60% to 100% and mineral dust INPs were detected at T < -21 °C. For the November samples, proteinaceous INPs were only detected at T > -16 °C with a fraction of 88% to 100% and mineral dust INPs were detected at T < -20 °C. The most effective INPs were possibly from South China and California based on 20-day backward simulations using the FLEXible PARTicle dispersion model and the correlations between INP concentrations and Al, , Na<sup>+</sup>, and Cl<sup>-</sup> measured at the site.  </p>


2017 ◽  
Vol 17 (17) ◽  
pp. 10879-10892 ◽  
Author(s):  
Matthew J. Gunsch ◽  
Rachel M. Kirpes ◽  
Katheryn R. Kolesar ◽  
Tate E. Barrett ◽  
Swarup China ◽  
...  

Abstract. Loss of sea ice is opening the Arctic to increasing development involving oil and gas extraction and shipping. Given the significant impacts of absorbing aerosol and secondary aerosol precursors emitted within the rapidly warming Arctic region, it is necessary to characterize local anthropogenic aerosol sources and compare to natural conditions. From August to September 2015 in Utqiaġvik (Barrow), AK, the chemical composition of individual atmospheric particles was measured by computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (0.13–4 µm projected area diameter) and real-time single-particle mass spectrometry (0.2–1.5 µm vacuum aerodynamic diameter). During periods influenced by the Arctic Ocean (70 % of the study), our results show that fresh sea spray aerosol contributed  ∼ 20 %, by number, of particles between 0.13 and 0.4 µm, 40–70 % between 0.4 and 1 µm, and 80–100 % between 1 and 4 µm particles. In contrast, for periods influenced by emissions from Prudhoe Bay (10 % of the study), the third largest oil field in North America, there was a strong influence from submicron (0.13–1 µm) combustion-derived particles (20–50 % organic carbon, by number; 5–10 % soot by number). While sea spray aerosol still comprised a large fraction of particles (90 % by number from 1 to 4 µm) detected under Prudhoe Bay influence, these particles were internally mixed with sulfate and nitrate indicative of aging processes during transport. In addition, the overall mode of the particle size number distribution shifted from 76 nm during Arctic Ocean influence to 27 nm during Prudhoe Bay influence, with particle concentrations increasing from 130 to 920 cm−3 due to transported particle emissions from the oil fields. The increased contributions of carbonaceous combustion products and partially aged sea spray aerosol should be considered in future Arctic atmospheric composition and climate simulations.


2018 ◽  
Author(s):  
Victoria E. Irish ◽  
Sarah J. Hanna ◽  
Megan D. Willis ◽  
Swarup China ◽  
Jennie L. Thomas ◽  
...  

Abstract. Ice nucleating particles (INPs) in the Arctic can influence climate and precipitation in the region; yet our understanding of the concentrations and sources of INPs in this region remain uncertain. In the following we (1) measured concentrations of INPs in the Canadian Arctic marine boundary layer during summer 2014 on board the CCGS Amundsen, (2) determined ratios of surface areas of mineral dust aerosol to sea spray aerosol, and (3) investigated the source region of the INPs using particle dispersion modelling. Average concentrations of INPs at −15, −20 and −25 °C were 0.005, 0.044, and 0.154 L−1, respectively. These concentrations fall within the range of INP concentrations measured in other marine environments. For the samples investigated the ratio of mineral dust surface area to sea spray surface area ranged from 0.03 to 0.09. Based on these ratios and the ice active surface site densities of mineral dust and sea spray aerosol determined in previous laboratory studies, our results suggest that mineral dust is a more important contributor to the INP population than sea spray aerosol for the samples analysed. Based on particle dispersion modelling, the highest concentrations of INPs were often associated with lower latitude source regions such as the Hudson Bay area, eastern Greenland, or northwestern continental Canada. On the other hand, the lowest concentrations were often associated with regions further north of the sampling sites and over Baffin Bay. A weak correlation was observed between INP concentrations and the time the air mass spent over bare land, and a weak negative correlation was observed between INP concentrations and the time the air mass spent over ice and open water. These combined results suggest that mineral dust from local sources is an important contributor to the INP population in the Canadian Arctic marine boundary layer during summer 2014.


2017 ◽  
Author(s):  
Matthew J. Gunsch ◽  
Rachel M. Kirpes ◽  
Katheryn R. Kolesar ◽  
Tate E. Barrett ◽  
Swarup China ◽  
...  

Abstract. Loss of sea ice is opening the Arctic to increasing development involving oil and gas extraction and shipping. Given the significant impacts of absorbing aerosol and secondary aerosol precursors emitted within the rapidly warming Arctic region, there is a need to characterize local anthropogenic aerosol sources and compare to natural conditions. From August-September 2015 in Utqiaġvik, AK, the chemical composition of individual atmospheric particles was measured by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (0.13–4 μm projected area diameter) and real-time single particle mass spectrometry (0.2–1.5 μm aerodynamic diameter). During Arctic Ocean influenced periods (70 % of the study), our results show that fresh sea spray aerosol contributed ~ 20 %, by number, of particles between 0.13–0.4 μm, 40–70% between 0.4–1 μm, and 80–100% of 1–4 μm particles. In contrast, for periods influenced by emissions from Prudhoe Bay (10 % of the study), the third largest oilfield in North America, there was a strong influence from submicron (0.13–1 μm) combustion derived particles (20–50 % OC, by number, 5–10 % soot by number). While sea spray aerosol still comprised a large fraction of particles (90 % by number from 1–4 μm) detected under Prudhoe Bay influence, these particles were internally mixed with sulfate and nitrate indicative of aging processes during transport. In addition, the overall mode of the particle size number distribution shifted from 76 nm during Arctic Ocean influence to 27 nm during Prudhoe Bay influence with particle concentrations increasing from 130 cm-3 to 920 cm-3 due to transported particle emissions from the oil fields. The increased contributions of carbonaceous combustion products and partially aged SSA should be taken into consideration for future Arctic atmospheric composition and climate simulations.


2020 ◽  
Author(s):  
Matteo Rinaldi ◽  
Naruki Hiranuma ◽  
Gianni Santachiara ◽  
Mauro Mazzola ◽  
Karam Mansour ◽  
...  

Abstract. The current inadequate understanding of ice nucleating particle (INP) sources in the Arctic region affects the uncertainty in global radiative budgets and in regional climate predictions. In this study, we present atmospheric INP concentrations by offline analyses on samples collected at ground level in Ny-Ålesund (Svalbard), in spring and summer 2018. The ice nucleation properties of the samples were characterized by means of two offline instruments: the Dynamic Filter Processing Chamber (DFPC), detecting condensation freezing INPs, and the West Texas Cryogenic Refrigerator Applied to Freezing Test system (WT-CRAFT), measuring INPs by immersion freezing. Both measurements agreed within an order of magnitude although with some notable offset. INP concentration measured by DFPC ranged 33–185 (median 88), 5–107 (50) and 3–66 (20) m−3, for T = −22, −18 and −15 °C, respectively, while at the same activation temperatures WT-CRAFT measured 3–199 (26), 1–34 (6) and 1–4 (2) m−3, with an offset apparently dependent on the INP activation temperature. This observation may indicate a different sensitivity of Arctic INPs to different ice nucleation modes, even though a contribution from measurement and/or sampling uncertainties cannot be ruled out. An increase in the coarse INP fraction was observed from spring to summer, particularly at the warmest temperature (up to ~ 70 % at −15 °C). This suggests a non-negligible contribution from local sources of biogenic aerosol particles. This conclusion is also supported by the INP temperature spectra, showing ice-forming activity at temperatures higher than −15 °C. Contrary to recent works (e.g., INP measurements from Ny-Ålesund in 2012), our results do not show a sharp spring-to-summer increase of the INP concentration, with distinct behaviors for particles active in different temperature ranges. This likely indicates that the inter-annual variability of conditions affecting the INP emission by local sources may be wider than previously considered and suggests a complex interplay between INP sources. This demonstrate the necessity of further data coverage. Analysis of INP concentrations, active site density, low-travelling back-trajectories (


2020 ◽  
Author(s):  
Xiaoxia Shang ◽  
Mika Komppula ◽  
Elina Giannakaki ◽  
Stephanie Bohlmann ◽  
Maria Filioglou ◽  
...  

<p>In the Arctic areas the influence of climate change is being felt at a higher degree than elsewhere. Enabling a better understanding of the environment in region is of high importance. Clouds play a significant role in the energy budget and the hydrological cycle of the Earth’s atmosphere system. In order to provide insights into Arctic cloud processes for Arctic cloud-climate studies, the field campaign PaCE (Pallas Cloud Experiment) was organized during autumn and winter 2019; the campaign was focusing on aerosol and cloud vertical profiling using in-situ and remote sensing techniques.</p><p>During the campaign, a ground-based multi-wavelength Raman polarization lidar Polly<sup>XT</sup> performed continuous measurements from September to December 2019, at the Kenttärova station (N 67°59’14”, E 24°14’35”, 347 m above sea level) at Pallas, in the northern Finland. This is a background station surrounded by the forest, where the atmosphere is quite clean. Cloud vertical structures and optical properties have been determined from lidar analysis. During day-time, the Klett method is applied to retrieve the vertical profiles of cloud extinction and backscatter coefficient at three wavelengths (355 nm, 532 nm and 1064 nm). During night-time, the standard Raman method is used to provide additional lidar ratio profiles at 355 nm and 532 nm. The actual linear depolarization ratio at two wavelengths (355 nm and 532 nm) are also retrieved. With water vapor channel at 407 nm, the relative humidity profile are also available for received signal with good signal-to-noise ratio. The combined use of near and far field telescopes provides reliable vertical profiles of optical properties from 0.25 km to 10 km above ground level. The temperature and thickness dependencies on optical properties have also been studied in detail. Geometrical properties of cloud are retrieved using both lidar and ceilometer, statistic values of cloud height, and thickness are shown.</p>


2015 ◽  
Vol 15 (19) ◽  
pp. 11047-11066 ◽  
Author(s):  
M. E. Salter ◽  
P. Zieger ◽  
J. C. Acosta Navarro ◽  
H. Grythe ◽  
A. Kirkevåg ◽  
...  

Abstract. We have developed an inorganic sea spray source function that is based upon state-of-the-art measurements of sea spray aerosol production using a temperature-controlled plunging jet sea spray aerosol chamber. The size-resolved particle production was measured between 0.01 and 10 μm dry diameter. Particle production decreased non-linearly with increasing seawater temperature (between −1 and 30 °C) similar to previous findings. In addition, we observed that the particle effective radius, as well as the particle surface, particle volume and particle mass, increased with increasing seawater temperature due to increased production of particles with dry diameters greater than 1 μm. By combining these measurements with the volume of air entrained by the plunging jet we have determined the size-resolved particle flux as a function of air entrainment. Through the use of existing parameterisations of air entrainment as a function of wind speed, we were subsequently able to scale our laboratory measurements of particle production to wind speed. By scaling in this way we avoid some of the difficulties associated with defining the "white area" of the laboratory whitecap – a contentious issue when relating laboratory measurements of particle production to oceanic whitecaps using the more frequently applied whitecap method. The here-derived inorganic sea spray source function was implemented in a Lagrangian particle dispersion model (FLEXPART – FLEXible PARTicle dispersion model). An estimated annual global flux of inorganic sea spray aerosol of 5.9 ± 0.2 Pg yr−1 was derived that is close to the median of estimates from the same model using a wide range of existing sea spray source functions. When using the source function derived here, the model also showed good skill in predicting measurements of Na+ concentration at a number of field sites further underlining the validity of our source function. In a final step, the sensitivity of a large-scale model (NorESM – the Norwegian Earth System Model) to our new source function was tested. Compared to the previously implemented parameterisation, a clear decrease of sea spray aerosol number flux and increase in aerosol residence time was observed, especially over the Southern Ocean. At the same time an increase in aerosol optical depth due to an increase in the number of particles with optically relevant sizes was found. That there were noticeable regional differences may have important implications for aerosol optical properties and number concentrations, subsequently also affecting the indirect radiative forcing by non-sea spray anthropogenic aerosols.


2015 ◽  
Vol 15 (9) ◽  
pp. 13827-13865 ◽  
Author(s):  
H. M. Allen ◽  
D. C. Draper ◽  
B. R. Ayres ◽  
A. Ault ◽  
A. Bondy ◽  
...  

Abstract. The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA), an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.


Sign in / Sign up

Export Citation Format

Share Document