scholarly journals Condensation and immersion freezing Ice Nucleating Particle measurements at Ny-Ålesund (Svalbard) during 2018: evidence of multiple source contribution

Author(s):  
Matteo Rinaldi ◽  
Naruki Hiranuma ◽  
Gianni Santachiara ◽  
Mauro Mazzola ◽  
Karam Mansour ◽  
...  

Abstract. The current inadequate understanding of ice nucleating particle (INP) sources in the Arctic region affects the uncertainty in global radiative budgets and in regional climate predictions. In this study, we present atmospheric INP concentrations by offline analyses on samples collected at ground level in Ny-Ålesund (Svalbard), in spring and summer 2018. The ice nucleation properties of the samples were characterized by means of two offline instruments: the Dynamic Filter Processing Chamber (DFPC), detecting condensation freezing INPs, and the West Texas Cryogenic Refrigerator Applied to Freezing Test system (WT-CRAFT), measuring INPs by immersion freezing. Both measurements agreed within an order of magnitude although with some notable offset. INP concentration measured by DFPC ranged 33–185 (median 88), 5–107 (50) and 3–66 (20) m−3, for T = −22, −18 and −15 °C, respectively, while at the same activation temperatures WT-CRAFT measured 3–199 (26), 1–34 (6) and 1–4 (2) m−3, with an offset apparently dependent on the INP activation temperature. This observation may indicate a different sensitivity of Arctic INPs to different ice nucleation modes, even though a contribution from measurement and/or sampling uncertainties cannot be ruled out. An increase in the coarse INP fraction was observed from spring to summer, particularly at the warmest temperature (up to ~ 70 % at −15 °C). This suggests a non-negligible contribution from local sources of biogenic aerosol particles. This conclusion is also supported by the INP temperature spectra, showing ice-forming activity at temperatures higher than −15 °C. Contrary to recent works (e.g., INP measurements from Ny-Ålesund in 2012), our results do not show a sharp spring-to-summer increase of the INP concentration, with distinct behaviors for particles active in different temperature ranges. This likely indicates that the inter-annual variability of conditions affecting the INP emission by local sources may be wider than previously considered and suggests a complex interplay between INP sources. This demonstrate the necessity of further data coverage. Analysis of INP concentrations, active site density, low-travelling back-trajectories (

2017 ◽  
Vol 17 (13) ◽  
pp. 8101-8128 ◽  
Author(s):  
Eyal Freud ◽  
Radovan Krejci ◽  
Peter Tunved ◽  
Richard Leaitch ◽  
Quynh T. Nguyen ◽  
...  

Abstract. The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station – Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed.A cluster analysis of the aerosol number size distributions revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and an inter-monthly scale. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, increases gradually to  ∼ 40 % from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic haze aerosols is minimal in summer and peaks in April at all sites.The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and western Russia is associated with relatively high concentrations of accumulation-mode particles (Nacc) at all five sites – often above 150 cm−3. There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes.The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of Nacc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is shown to be important on a regional scale and it is most active in summer. Cloud processing is an additional factor that enhances the Nacc annual cycle.There are some consistent differences between the sites that are beyond the year-to-year variability. They are the result of differences in the proximity to the aerosol source regions and to the Arctic Ocean sea-ice edge, as well as in the exposure to free-tropospheric air and in precipitation patterns – to mention a few. Hence, for most purposes, aerosol observations from a single Arctic site cannot represent the entire Arctic region. Therefore, the results presented here are a powerful observational benchmark for evaluation of detailed climate and air chemistry modelling studies of aerosols throughout the vast Arctic region.


2005 ◽  
Vol 18 (13) ◽  
pp. 2515-2530 ◽  
Author(s):  
Tido Semmler ◽  
Daniela Jacob ◽  
K. Heinke Schlünzen ◽  
Ralf Podzun

Abstract The Arctic plays a major role in the global circulation, and its water and energy budget is not as well explored as that in other regions of the world. The aim of this study is to calculate the climatological mean water and energy fluxes depending on the season and on the North Atlantic Oscillation (NAO) through the lower, lateral, and upper boundaries of the Arctic atmosphere north of 70°N. The relevant fluxes are derived from results of the regional climate model (REMO 5.1), which is applied to the Arctic region for the time period 1979–2000. Model forcing data are a combination of 15-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-15) data and analysis data. The annual and seasonal total water and energy fluxes derived from REMO 5.1 results are very similar to the fluxes calculated from observational and reanalysis data, although there are some differences in the components. The agreement between simulated and observed total fluxes shows that these fluxes are reliable. Even if differences between high and low NAO situations occur in our simulation consistent with previous studies, these differences are mostly smaller than the large uncertainties due to a small sample size of the NAO high and low composites.


2017 ◽  
Author(s):  
Eyal Freud ◽  
Radovan Krejci ◽  
Peter Tunved ◽  
Richard Leaitch ◽  
Quynh T. Nguyen ◽  
...  

Abstract. The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station – Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed. A cluster analysis of the aerosol number size distributions, revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and inter-monthly scales. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, and increases gradually to ~ 40 % from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic Haze aerosols is minimal in summer and peaks in April at all sites. The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and Western Russia is associated with relatively high concentrations of accumulation-mode particles (Nacc) at all five sites – often above 150 cm−3. There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes. The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of Nacc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is shown to be important on a regional scale and it is most active in summer. Cloud processing is an additional factor that enhances the Nacc annual cycle. There are some consistent differences between the sites that are beyond the year-to-year variability. They are the result of differences in the proximity to the aerosol source regions and to the Arctic Ocean sea-ice edge, as well as in the exposure to free tropospheric air and in precipitation patterns – to mention a few. Hence, for most purposes, aerosol observations from a single Arctic site cannot represent the entire Arctic region. Therefore, the results presented here are a powerful observational benchmark for evaluation of detailed climate and air chemistry modelling studies of aerosols throughout the vast Arctic region.


2013 ◽  
Vol 26 (16) ◽  
pp. 5981-5999 ◽  
Author(s):  
Shaocheng Xie ◽  
Xiaohong Liu ◽  
Chuanfeng Zhao ◽  
Yuying Zhang

Abstract Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model, version 5, to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN concentration at all latitudes while changes in cloud amounts and properties are mainly seen at high- and midlatitude storm tracks. In the Arctic, there is a considerable increase in midlevel clouds and a decrease in low-level clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path caused by the slowdown of the Bergeron–Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low-level cloud simulations over most of the Arctic but produces too many midlevel clouds. Considerable improvements are seen in the simulated low-level clouds and their properties when compared with Arctic ground-based measurements. Issues with the observations and the model–observation comparison in the Arctic region are discussed.


2021 ◽  
Vol 17 (4) ◽  
pp. 1685-1699
Author(s):  
Marcus Breil ◽  
Emanuel Christner ◽  
Alexandre Cauquoin ◽  
Martin Werner ◽  
Melanie Karremann ◽  
...  

Abstract. In order to investigate the impact of spatial resolution on the discrepancy between simulated δ18O and observed δ18O in Greenland ice cores, regional climate simulations are performed with the isotope-enabled regional climate model (RCM) COSMO_iso. For this purpose, isotope-enabled general circulation model (GCM) simulations with the ECHAM5-wiso general circulation model (GCM) under present-day conditions and the MPI-ESM-wiso GCM under mid-Holocene conditions are dynamically downscaled with COSMO_iso for the Arctic region. The capability of COSMO_iso to reproduce observed isotopic ratios in Greenland ice cores for these two periods is investigated by comparing the simulation results to measured δ18O ratios from snow pit samples, Global Network of Isotopes in Precipitation (GNIP) stations and ice cores. To our knowledge, this is the first time that a mid-Holocene isotope-enabled RCM simulation is performed for the Arctic region. Under present-day conditions, a dynamical downscaling of ECHAM5-wiso (1.1∘×1.1∘) with COSMO_iso to a spatial resolution of 50 km improves the agreement with the measured δ18O ratios for 14 of 19 observational data sets. A further increase in the spatial resolution to 7 km does not yield substantial improvements except for the coastal areas with its complex terrain. For the mid-Holocene, a fully coupled MPI-ESM-wiso time slice simulation is downscaled with COSMO_iso to a spatial resolution of 50 km. In the mid-Holocene, MPI-ESM-wiso already agrees well with observations in Greenland and a downscaling with COSMO_iso does not further improve the model–data agreement. Despite this lack of improvement in model biases, the study shows that in both periods, observed δ18O values at measurement sites constitute isotope ratios which are mainly within the subgrid-scale variability of the global ECHAM5-wiso and MPI-ESM-wiso simulation results. The correct δ18O ratios are consequently not resolved in the GCM simulation results and need to be extracted by a refinement with an RCM. In this context, the RCM simulations provide a spatial δ18O distribution by which the effects of local uncertainties can be taken into account in the comparison between point measurements and model outputs. Thus, an isotope-enabled GCM–RCM model chain with realistically implemented fractionating processes constitutes a useful supplement to reconstruct regional paleo-climate conditions during the mid-Holocene in Greenland. Such model chains might also be applied to reveal the full potential of GCMs in other regions and climate periods, in which large deviations relative to observed isotope ratios are simulated.


2020 ◽  
Author(s):  
Yikun Yang ◽  
Chuanfeng Zhao ◽  
Quan Wang ◽  
Zhiyuan Cong ◽  
Xingchuan Yang ◽  
...  

Abstract. To better understand the aerosol properties over the Arctic, Antarctic, and Tibetan Plateau (TP), the aerosol optical properties were investigated using 13 years CALIPSO L3 data, and the back trajectories for air masses were also simulated using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The results show that the aerosol optical depth (AOD) has obvious spatial and seasonal variation characteristics, and the aerosol loading over Eurasia, Ross Sea, and South Asia is relatively large. The annual average AOD in the Arctic, Antarctic, and TP are 0.046, 0.025, and 0.098, respectively. The Arctic and Antarctic regions have larger AOD values in winter and spring, while the TP in spring and summer. There are no significant temporal trends of AOD anomalies in the three study regions. Clean marine and dust-related aerosols are the dominant types over ocean and land respectively in both the Arctic and Antarctic, while dust-related aerosol types have greater occurrence frequency (OF) over the TP. The OF of dust-related and elevated smoke is large for a broad range of heights, indicating that they are likely transported aerosols, while other types of aerosols mainly occurred at heights below 2 km in the Antarctic and Arctic. The maximum OF of dust-related aerosols mainly occurs at 6 km altitude over the TP. The analysis of back trajectories of the air masses shows large differences among different regions and seasons. The Arctic region is more vulnerable to mid-latitude pollutants than the Antarctic region, especially in winter and spring, while the air masses in the TP are mainly from the Iranian Plateau, Tarim Basin, and South Asia.


2019 ◽  
Vol 19 (5) ◽  
pp. 3007-3024 ◽  
Author(s):  
Meng Si ◽  
Erin Evoy ◽  
Jingwei Yun ◽  
Yu Xi ◽  
Sarah J. Hanna ◽  
...  

Abstract. Modelling studies suggest that the climate and the hydrological cycle are sensitive to the concentrations of ice-nucleating particles (INPs). However, the concentrations, composition, and sources of INPs in the atmosphere remain uncertain. Here, we report daily concentrations of INPs in the immersion freezing mode and tracers of mineral dust (Al, Fe, Ti, and Mn), sea spray aerosol (Na+ and Cl−), and anthropogenic aerosol (Zn, Pb, NO3-, NH4+, and non-sea-salt SO42-) at Alert, Canada, during a 3-week campaign in March 2016. In total, 16 daily measurements of INPs are reported. The average INP concentrations measured in the immersion freezing mode were 0.005±0.002, 0.020±0.004, and 0.186±0.040 L−1 at −15, −20, and −25 ∘C, respectively. These concentrations are within the range of concentrations measured previously in the Arctic at ground level or sea level. Mineral dust tracers all correlated with INPs at −25 ∘C (correlation coefficient, R, ranged from 0.70 to 0.76), suggesting that mineral dust was a major contributor to the INP population at −25 ∘C. Particle dispersion modelling suggests that the source of the mineral dust may have been long-range transport from the Gobi Desert. Sea spray tracers were anti-correlated with INPs at −25 ∘C (R=-0.56). In addition, INP concentrations at −25 ∘C divided by mass concentrations of aluminum were anti-correlated with sea spray tracers (R=-0.51 and −0.55 for Na+ and Cl−, respectively), suggesting that the components of sea spray aerosol suppressed the ice-nucleating ability of mineral dust in the immersion freezing mode. Correlations between INPs and anthropogenic aerosol tracers were not statistically significant. These results will improve our understanding of INPs in the Arctic during spring.


2021 ◽  
pp. 1-43
Author(s):  
Weina Guan ◽  
Xianan Jiang ◽  
Xuejuan Ren ◽  
Gang Chen ◽  
Qinghua Ding

AbstractThe leading interannual mode of winter surface air temperature over the North American (NA) sector, characterized by a “Warm Arctic, Cold Continents” (WACC) pattern, exerts pronounced influences on NA weather and climate, while its underlying mechanisms remain elusive. In this study, the relative roles of surface boundary forcing versus internal atmospheric processes for the formation of the WACC pattern are quantitatively investigated using a combined analysis of observations and large-ensemble atmospheric global climate model simulations. Internal atmospheric variability is found to play an important role in shaping the year-to-year WACC variability, contributing to about half of the total variance. An anomalous SST pattern resembling the North Pacific Mode is identified as a major surface boundary forcing pattern in driving the interannual WACC variability over the NA sector, with a minor contribution from sea ice variability over the Chukchi- Bering Seas. Findings from this study not only lead to improved understanding of underlying physics regulating the interannual WACC variability, but also provide important guidance for improved modeling and prediction of regional climate variability over NA and the Arctic region.


2018 ◽  
Author(s):  
Meng Si ◽  
Erin Evoy ◽  
Jingwei Yun ◽  
Yu Xi ◽  
Sarah Hanna ◽  
...  

Abstract. Modelling studies suggest that the climate and the hydrological cycle are sensitive to the concentrations of ice-nucleating particles (INPs). However, the concentrations, composition, and sources of INPs in the atmosphere remain uncertain. Here we report daily concentrations of INPs and tracers of mineral dust (Al, Fe, Ti, and Mn), sea spray aerosol (Na+ and Cl−), and anthropogenic aerosol (Zn, Pb, NO3−, NH4+, and non-sea-salt SO42−) at Alert, Canada during a three-week campaign in March 2016. The average INP concentrations measured in the immersion freezing mode were approximately 0.005 ± 0.002 L−1, 0.020 ± 0.004 L−1, and 0.186 ± 0.040 L−1 at −15 ºC, −20 ºC, and −25 ºC, respectively. These concentrations are within the range of concentrations measured previously in the Arctic at ground level or sea level. Mineral dust tracers all correlated with INPs at −25 ºC (correlation coefficient, R, ranged from 0.70 to 0.76), suggesting that mineral dust was a major contributor to the INP population. Particle dispersion modelling suggests that the source of the mineral dust may have been the long-range transported dust from the Gobi desert. Sea spray tracers were anti-correlated with INPs at −25 ºC (R = −0.56). In addition, INP concentrations at −25 ºC divided by mass concentrations of aluminum were anti-correlated with sea spray tracers (R = −0.51 and −0.55 for Na+ and Cl−, respectively), suggesting that the components of sea spray aerosol suppressed the ice-nucleating ability of mineral dust in the immersion freezing mode. Correlations between INPs and anthropogenic aerosol tracers were not statistically significant. These results will improve our understanding of INPs in the Arctic during spring.


2021 ◽  
Vol 21 (18) ◽  
pp. 14215-14234
Author(s):  
Naruki Hiranuma ◽  
Brent W. Auvermann ◽  
Franco Belosi ◽  
Jack Bush ◽  
Kimberly M. Cory ◽  
...  

Abstract. In this work, an abundance of ice-nucleating particles (INPs) from livestock facilities was studied through laboratory measurements from cloud-simulation chamber experiments and field investigation in the Texas Panhandle. Surface materials from two livestock facilities, one in the Texas Panhandle and another from McGregor, Texas, were selected as dust proxies for laboratory analyses. These two samples possessed different chemical and biological properties. A combination of aerosol interaction and dynamics in the atmosphere (AIDA) measurements and offline ice spectrometry was used to assess the immersion freezing mode ice nucleation ability and efficiency of these proxy samples at temperatures above −29 ∘C. A dynamic filter processing chamber was also used to complement the freezing efficiencies of submicron and supermicron particles collected from the AIDA chamber. For the field survey, periodic ambient particle sampling took place at four commercial livestock facilities from July 2017 to July 2019. INP concentrations of collected particles were measured using an offline freezing test system, and the data were acquired for temperatures between −5 and −25 ∘C. Our AIDA laboratory results showed that the freezing spectra of two livestock dust proxies exhibited higher freezing efficiency than previously studied soil dust samples at temperatures below −25 ∘C. Despite their differences in composition, the freezing efficiencies of both proxy livestock dust samples were comparable to each other. Our dynamic filter processing chamber results showed on average approximately 50 % supermicron size dominance in the INPs of both dust proxies. Thus, our laboratory findings suggest the importance of particle size in immersion freezing for these samples and that the size might be a more important factor for immersion freezing of livestock dust than the composition. From a 3-year field survey, we measured a high concentration of ambient INPs of 1171.6 ± 691.6 L−1 (average ± standard error) at −25 ∘C for aerosol particles collected at the downwind edges of livestock facilities. An obvious seasonal variation in INP concentration, peaking in summer, was observed, with the maximum at the same temperature exceeding 10 000 L−1 on 23 July 2018. The observed high INP concentrations suggest that a livestock facility is a substantial source of INPs. The INP concentration values from our field survey showed a strong correlation with measured particulate matter mass concentration, which supports the importance of size in ice nucleation of particles from livestock facilities.


Sign in / Sign up

Export Citation Format

Share Document