scholarly journals Decennial time trends and diurnal patterns of particle number concentrations in a central European city between 2008 and 2018

2020 ◽  
Vol 20 (20) ◽  
pp. 12247-12263
Author(s):  
Santtu Mikkonen ◽  
Zoltán Németh ◽  
Veronika Varga ◽  
Tamás Weidinger ◽  
Ville Leinonen ◽  
...  

Abstract. Multiple atmospheric properties were measured semi-continuously in the Budapest platform for Aerosol Research and Training laboratory, which represents the urban background for the time interval of 2008–2018. Data of 6 full measurement years during a decennial time interval were subjected to statistical time trend analyses by an advanced dynamic linear model and a generalized linear mixed model. The main interest in the analysed data set was on particle number concentrations in the diameter ranges from 6 to 1000 nm (N6−1000), from 6 to 100 nm (N6−100, ultrafine particles), from 25 to 100 nm (N25−100) and from 100 to 1000 nm (N100−1000). These data were supported by concentrations of SO2, CO, NO, NOx, O3, PM10 mass, as well as air temperature, relative humidity, wind speed, atmospheric pressure, global solar radiation, condensation sink, gas-phase H2SO4 proxy, classes of new aerosol particle formation (NPF), and growth events and meteorological macro-circulation patterns. The trend of the particle number concentrations derived as a change in the statistical properties of background state of the data set decreased in all size fractions over the years. Most particle number concentrations showed decreasing decennial statistical trends. The estimated annual mean decline of N6−1000 was (4–5) % during the 10-year measurement interval, which corresponds to a mean absolute change of −590 cm−3 in a year. This was interpreted as a consequence of the decreased anthropogenic emissions at least partly from road traffic alongside household heating and industry. Similar trends were not observed for the air pollutant gases. Diurnal statistical patterns of particle number concentrations showed tendentious variations, which were associated with a typical diurnal activity–time pattern of inhabitants in cities, particularly of vehicular road traffic. The trend patterns for NPF event days contained a huge peak from late morning to late afternoon, which is unambiguously caused by NPF and growth processes. These peaks were rather similar to each other in the position, shape and area on workdays and holidays, which implies that the dynamic and timing properties of NPF events are not substantially influenced by anthropogenic activities in central Budapest. The diurnal pattern for N25−100 exhibited the largest relative changes, which were related to particle emissions from high-temperature sources. The diurnal pattern for N100−1000 – which represents chemically and physically aged particles of larger spatial scale – were different from the diurnal patterns for the other size fractions.

2020 ◽  
Author(s):  
Santtu Mikkonen ◽  
Zoltán Németh ◽  
Veronika Varga ◽  
Tamás Weidinger ◽  
Ville Leinonen ◽  
...  

Abstract. Multiple atmospheric properties were measured semi-continuously in the Budapest platform for Aerosol Research and Training Laboratory for a time interval of 2008–2018. Dataset of 6 full measurement years during a decennial time interval were subjected to statistical time trend analyses by an advanced dynamic linear model and a generalized linear mixed model. The main interest in the analysed data set was on particle number concentrations in the diameter ranges from 6 to 1000 nm (N6–1000), from 6 to 100 nm (N6–100, ultrafine particles), from 25 to 100 nm (N25–100) and from 100 to 1000 nm (N100–1000). These data were supported by concentrations of SO2, CO, NO, NOx, O3, PM10 mass, air temperature, relative humidity, wind speed, atmospheric pressure, global solar radiation, condensation sink, gas-phase H2SO4 proxy, classes of new aerosol particle formation (NPF) and growth events and meteorological macro-circulation patterns. The trend of the particle number concentrations derived as a change in the statistical properties of background state of the data set decreased in all size fractions over the years. Most particle number concentrations showed decreasing decennial statistical trends. The estimated annual mean decline of N6–1000 was (4–5) % during the 10-year measurement interval, which corresponds to a mean absolute change of −590 cm−3 in a year. This was interpreted as a consequence of the decreased anthropogenic emissions mainly from road traffic. Similar trends were not observed for the air pollutant gases. Diurnal statistical patterns of particle number concentrations showed tendentious variations, which were associated with typical diurnal activity–time pattern of inhabitants in cities, particularly of vehicular road traffic. The trend patterns for NPF event days contained a huge peak from late morning to late afternoon, which is unambiguously caused by NPF and growth processes. These peaks were rather similar to each other in the position, shape and area on workdays and holidays, which implies that the dynamic and timing properties of NPF events are not substantially influenced by anthropogenic activities in central Budapest. Diurnal pattern for N25–100 exhibited the largest relative changes, which were related to particle emissions from high-temperature sources. The diurnal pattern for N100–1000 – which represents chemically and physically aged particles of larger spatial scale – were different from the diurnal patterns for the other size fractions.


2020 ◽  
Author(s):  
Imre Salma ◽  
Máté Vörösmarty ◽  
András Zénó Gyöngyösi ◽  
Wanda Thén ◽  
Tamás Weidinger

Abstract. Motor vehicle road traffic in central Budapest was reduced by approximately 50 % of its ordinary level for several weeks as a consequence of various limitation measures introduced to mitigate the first outbreak of COVID-19 pandemic in 2020. The situation was utilised to assess the real potentials of urban traffic on air quality. Concentrations of NO, NO2, CO, O3, SO2 and particulate matter (PM) mass, which are ordinarily monitored in cities for air quality considerations, aerosol particle number size distributions, which are not rarely measured on-line continuously on longer run for research purposes and basic meteorological properties usually available were jointly evaluated. The largest changes occurred in the time interval of the severest limitations (partial lock-down in the Restriction phase from 28 March to 17 May 2020). Concentrations of NO, NO2, CO, total particle number (N6–1000) and particles with a diameter


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 562
Author(s):  
Jorge Moreda-Piñeiro ◽  
Joel Sánchez-Piñero ◽  
María Fernández-Amado ◽  
Paula Costa-Tomé ◽  
Nuria Gallego-Fernández ◽  
...  

Due to the exponential growth of the SARS-CoV-2 pandemic in Spain (2020), the Spanish Government adopted lockdown measures as mitigating strategies to reduce the spread of the pandemic from 14 March. In this paper, we report the results of the change in air quality at two Atlantic Coastal European cities (Northwest Spain) during five lockdown weeks. The temporal evolution of gaseous (nitrogen oxides, comprising NOx, NO, and NO2; sulfur dioxide, SO2; carbon monoxide, CO; and ozone, O3) and particulate matter (PM10; PM2.5; and equivalent black carbon, eBC) pollutants were recorded before (7 February to 13 March 2020) and during the first five lockdown weeks (14 March to 20 April 2020) at seven air quality monitoring stations (urban background, traffic, and industrial) in the cities of A Coruña and Vigo. The influences of the backward trajectories and meteorological parameters on air pollutant concentrations were considered during the studied period. The temporal trends indicate that the concentrations of almost all species steadily decreased during the lockdown period with statistical significance, with respect to the pre-lockdown period. In this context, great reductions were observed for pollutants related mainly to fossil fuel combustion, road traffic, and shipping emissions (−38 to −78% for NO, −22 to −69% for NO2, −26 to −75% for NOx, −3 to −77% for SO2, −21% for CO, −25 to −49% for PM10, −10 to −38% for PM2.5, and −29 to −51% for eBC). Conversely, O3 concentrations increased from +5 to +16%. Finally, pollutant concentration data for 14 March to 20 April of 2020 were compared with those of the previous two years. The results show that the overall air pollutants levels were higher during 2018–2019 than during the lockdown period.


2015 ◽  
Vol 8 (3) ◽  
pp. 2881-2912 ◽  
Author(s):  
J. M. Wang ◽  
C.-H. Jeong ◽  
N. Zimmerman ◽  
R. M. Healy ◽  
D. K. Wang ◽  
...  

Abstract. An automated identification and integration method has been developed to investigate in-use vehicle emissions under real-world conditions. This technique was applied to high time resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada during four seasons, through month-long campaigns in 2013–2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number, black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX); and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg−1 and 7.7 × 1014 kg−1, respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet (< 25%) contributed significantly to total fleet emissions; 95, 93, 76, and 75% for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter. However, regulatory strategies to more efficiently target multi-pollutants mixtures may be better developed by considering the co-emitted pollutants as well.


2016 ◽  
Vol 16 (11) ◽  
pp. 6823-6840 ◽  
Author(s):  
Pauli Paasonen ◽  
Kaarle Kupiainen ◽  
Zbigniew Klimont ◽  
Antoon Visschedijk ◽  
Hugo A. C. Denier van der Gon ◽  
...  

Abstract. Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas–Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol–cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening emission regulations. However, there are significant uncertainties in these current emission estimates and the key actions for decreasing the uncertainties are pointed out.


2016 ◽  
Author(s):  
P. Paasonen ◽  
K. Kupiainen ◽  
Z. Klimont ◽  
A. Visshedijk ◽  
H. A. C. Denier van der Gon ◽  
...  

Abstract. Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future, anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g., in response to tightening emission regulations. However, there are significant uncertainties in these current emission estimates and the key actions for decreasing the uncertainties are pointed out.


2015 ◽  
Vol 15 (17) ◽  
pp. 10087-10092 ◽  
Author(s):  
L. Kattner ◽  
B. Mathieu-Üffing ◽  
J. P. Burrows ◽  
A. Richter ◽  
S. Schmolke ◽  
...  

Abstract. In 1997 the International Maritime Organisation (IMO) adopted MARPOL Annex VI to prevent air pollution by shipping emissions. It regulates, among other issues, the sulfur content in shipping fuels, which is transformed into the air pollutant sulfur dioxide (SO2) during combustion. Within designated Sulfur Emission Control Areas (SECA), the sulfur content was limited to 1 %, and on 1 January 2015, this limit was further reduced to 0.1 %. Here we present the set-up and measurement results of a permanent ship emission monitoring site near Hamburg harbour in the North Sea SECA. Trace gas measurements are conducted with in situ instruments and a data set from September 2014 to January 2015 is presented. By combining measurements of carbon dioxide (CO2) and SO2 with ship position data, it is possible to deduce the sulfur fuel content of individual ships passing the measurement station, thus facilitating the monitoring of compliance of ships with the IMO regulations. While compliance is almost 100 % for the 2014 data, it decreases only very little in 2015 to 95.4 % despite the much stricter limit. We analysed more than 1400 ship plumes in total and for months with favourable conditions, up to 40 % of all ships entering and leaving Hamburg harbour could be checked for their sulfur fuel content.


2017 ◽  
Vol 17 (24) ◽  
pp. 15007-15017 ◽  
Author(s):  
Imre Salma ◽  
Veronika Varga ◽  
Zoltán Németh

Abstract. Effects of a new aerosol particle formation (NPF) and particle diameter growth process as a single source of atmospheric particle number concentrations were evaluated and quantified on the basis of experimental data sets obtained from particle number size distribution measurements in the city centre and near-city background of Budapest for 5 years. Nucleation strength factors for a nucleation day (NSFNUC) and for a general day (NSFGEN) were derived separately for seasons and full years. The former characteristic represents the concentration increment of ultrafine (UF) particles specifically on nucleation days with respect to accumulation-mode (regional background) concentrations (particles with equivalent diameters of 100–1000 nm; N100−1000) due solely to the nucleation process. The latter factor expresses the contribution of nucleation to particle numbers on general days; thus, it represents a longer time interval such as season or year. The nucleation source had the largest effect on the concentrations around noon and early afternoon, as expected. During this time interval, it became the major source of particles in the near-city background. Nucleation increased the daily mean concentrations on nucleation days by mean factors of 2.3 and 1.58 in the near-city background and city centre, respectively. Its effect was largest in winter, which was explained by the substantially lower N100−1000 levels on nucleation days than those on non-nucleation days. On an annual timescale, 37 % of the UF particles were generated by nucleation in the near-city background, while NPF produced 13 % of UF particles in the city centre. The differences among the annual mean values, and among the corresponding seasonal mean values, were likely caused by the variability in controlling factors from year to year. The values obtained represent the lower limits of the contributions. The shares determined imply that NPF is a non-negligible or substantial source of particles in near-city background environments and even in city centres, where the vehicular road emissions usually prevail. Atmospheric residence time of nucleation-mode particles was assessed by a decay curve analysis, and a mean of 02:30 was obtained. The present study suggests that the health-related consequences of the atmospheric NPF and growth process in cities should also be considered in addition to its urban climate implications.


2017 ◽  
Vol 10 (9) ◽  
pp. 3575-3588 ◽  
Author(s):  
Eben S. Cross ◽  
Leah R. Williams ◽  
David K. Lewis ◽  
Gregory R. Magoon ◽  
Timothy B. Onasch ◽  
...  

Abstract. The environments in which we live, work, and play are subject to enormous variability in air pollutant concentrations. To adequately characterize air quality (AQ), measurements must be fast (real time), scalable, and reliable (with known accuracy, precision, and stability over time). Lower-cost air-quality-sensor technologies offer new opportunities for fast and distributed measurements, but a persistent characterization gap remains when it comes to evaluating sensor performance under realistic environmental sampling conditions. This limits our ability to inform the public about pollution sources and inspire policy makers to address environmental justice issues related to air quality. In this paper, initial results obtained with a recently developed lower-cost air-quality-sensor system are reported. In this project, data were acquired with the ARISense integrated sensor package over a 4.5-month time interval during which the sensor system was co-located with a state-operated (Massachusetts, USA) air quality monitoring station equipped with reference instrumentation measuring the same pollutant species. This paper focuses on validating electrochemical (EC) sensor measurements of CO, NO, NO2, and O3 at an urban neighborhood site with pollutant concentration ranges (parts per billion by volume, ppb; 5 min averages, ±1σ): [CO]  =  231 ± 116 ppb (spanning 84–1706 ppb), [NO]  =  6.1 ± 11.5 ppb (spanning 0–209 ppb), [NO2]  =  11.7 ± 8.3 ppb (spanning 0–71 ppb), and [O3]  =  23.2 ± 12.5 ppb (spanning 0–99 ppb). Through the use of high-dimensional model representation (HDMR), we show that interference effects derived from the variable ambient gas concentration mix and changing environmental conditions over three seasons (sensor flow-cell temperature  =  23.4 ± 8.5 °C, spanning 4.1 to 45.2 °C; and relative humidity  =  50.1 ± 15.3 %, spanning 9.8–79.9 %) can be effectively modeled for the Alphasense CO-B4, NO-B4, NO2-B43F, and Ox-B421 sensors, yielding (5 min average) root mean square errors (RMSE) of 39.2, 4.52, 4.56, and 9.71 ppb, respectively. Our results substantiate the potential for distributed air pollution measurements that could be enabled with these sensors.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nico Kuehnel ◽  
Dominik Ziemke ◽  
Rolf Moeckel

Road traffic is a common source of negative environmental externalities such as noise and air pollution. While existing transport models are capable of accurately representing environmental stressors of road traffic, this is less true for integrated land-use/transport models. So-called land-use-transport-environment models aim to integrate environmental impacts. However, the environmental implications are often analyzed as an output of the model only, even though research suggests that the environment itself can have an impact on land use. The few existing models that actually introduce a feedback between land-use and environment fall back on aggregated zonal values. This paper presents a proof of concept for an integrated, microscopic and agent-based approach for a feedback loop between transport-related noise emissions and land-use. The results show that the microscopic link between the submodels is operational and fine-grained analysis by different types of agents is possible. It is shown that high-income households react differently to noise exposure when compared low-income households. The presented approach opens new possibilities for analyzing and understanding noise abatement policies as well as issues of environmental equity. The methodology can be transferred to include air pollutant emissions in the future.


Sign in / Sign up

Export Citation Format

Share Document