scholarly journals Relative effects of open biomass burning and open crop straw burning on haze formation over central and eastern China: modeling study driven by constrained emissions

2020 ◽  
Vol 20 (4) ◽  
pp. 2419-2443 ◽  
Author(s):  
Khalid Mehmood ◽  
Yujie Wu ◽  
Liqiang Wang ◽  
Shaocai Yu ◽  
Pengfei Li ◽  
...  

Abstract. Open biomass burning (OBB) has a high potential to trigger local and regional severe haze with elevated fine particulate matter (PM2.5) concentrations and could thus deteriorate ambient air quality and threaten human health. Open crop straw burning (OCSB), as a critical part of OBB, emits abundant gaseous and particulate pollutants, especially in fields with intensive agriculture, such as in central and eastern China (CEC). This region includes nine provinces, i.e., Hubei, Anhui, Henan, Hunan, Jiangxi, Shandong, Jiangsu, Shanghai, and Fujian. The first four ones are located inland, while the others are on the eastern coast. However, uncertainties in current OCSB and other types of OBB emissions in chemical transport models (CTMs) lead to inaccuracies in evaluating their impacts on haze formations. Satellite retrievals provide an alternative that can be used to simultaneously quantify emissions of OCSB and other types of OBB, such as the Fire INventory from NCAR version 1.5 (FINNv1.5), which, nevertheless, generally underestimates their magnitudes due to unresolved small fires. In this study, we selected June 2014 as our study period, which exhibited a complete evolution process of OBB (from 1 to 19 June) over CEC. During this period, OBB was dominated by OCSB in terms of the number of fire hotspots and associated emissions (74 %–94 %), most of which were located at Henan and Anhui (> 60 %) with intensive enhancements from 5 to 14 June (> 80 %). OCSB generally exhibits a spatiotemporal correlation with regional haze over the central part of CEC (Henan, Anhui, Hubei, and Hunan), while other types of OBB emissions had influences on Jiangxi, Zhejiang, and Fujian. Based on these analyses, we establish a constraining method that integrates ground-level PM2.5 measurements with a state-of-art fully coupled regional meteorological and chemical transport model (the two-way coupled WRF-CMAQ) in order to derive optimal OBB emissions based on FINNv1.5. It is demonstrated that these emissions allow the model to reproduce meteorological and chemical fields over CEC during the study period, whereas the original FINNv1.5 underestimated OBB emissions by 2–7 times, depending on specific spatiotemporal scales. The results show that OBB had substantial impacts on surface PM2.5 concentrations over CEC. Most of the OBB contributions were dominated by OCSB, especially in Henan, Anhui, Hubei, and Hunan, while other types of OBB emissions also exerted an influence in Jiangxi, Zhejiang, and Fujian. With the concentration-weighted trajectory (CWT) method, potential OCSB sources leading to severe haze in Henan, Anhui, Hubei, and Hunan were pinpointed. The results show that the OCSB emissions in Henan and Anhui can cause haze not only locally but also regionally through regional transport. Combining with meteorological analyses, we can find that surface weather patterns played a cardinal role in reshaping spatial and temporal characteristics of PM2.5 concentrations. Stationary high-pressure systems over CEC enhanced local PM2.5 concentrations in Henan and Anhui. Then, with the evolution of meteorological patterns, Hubei and Hunan in the low-pressure system were impacted by areas (i.e., Henan and Anhui) enveloped in the high-pressure system. These results suggest that policymakers should strictly undertake interprovincial joint enforcement actions to prohibit irregular OBB, especially OCSB over CEC. Constrained OBB emissions can, to a large extent, supplement estimations derived from satellite retrievals as well as reduce overestimates of bottom-up methods.

2020 ◽  
Author(s):  
Pengfei Li ◽  
Shaocai Yu ◽  
Yujie Wu ◽  
khalid Mehmood ◽  
Liqiang Wang ◽  
...  

<p><span>Open biomass burning (OBB) has large potential in triggering local and regional severe haze with elevated fine particulate matter (PM<sub>2.5</sub>) concentrations and could thus deteriorate ambient air quality and threaten human health. Open crop straw burning (OCSB), as a critical part of OBB, emits abundant gaseous and particulate pollutants, especially in fields with intensive agriculture, such as central and eastern China (CEC).  However, uncertainties in current OCSB and other types of OBB emissions in </span><span>chemical transport models (CTMs) lead to inaccuracies in evaluating their impacts on haze formations. Satellite retrievals provide </span><span>an alternative that can be used to simultaneously quantify emissions of </span><span>OCSB and other types of OBB, such as </span><span>the Fire INventory from NCAR version 1.5 (FINNv1.5), which, nevertheless, generally underestimate their magnitudes due to unresolved small fires. In this study, we selected June in 2014 as our study period, which exhibited a complete evolution process of OBB (from June 1 to 19) over CEC. During this period, OBB was dominated by OCSB in terms of the number of fire hotspot and associated emissions, most of which were located at Henan and Anhui with intensive enhancements from June 5 to 14. OCSB generally exhibits spatiotemporal correlation with regional haze over the central part of CEC (Henan, Anhui, Hubei, and Hunan), while other types of OBB emissions had influences on Jiangxi, Zhejiang, and Fujian. Based on these analyses, we establish a constraining method that integrates </span><span>ground-level PM<sub>2.5</sub> measurements with </span><span>a state-of-art fully coupled regional meteorological and chemical transport model (the two-way coupled WRF-CMAQ) in order to derive optimal OBB emissions based on FINNv1.5. It is demonstrated that these emissions allow the model to reproduce meteorological and chemical fields over CEC during the study period, whereas the original FINNv1.5 underestimated OBB emissions by 2 ~ 7 times, depending on specific spatiotemporal scales. The results show that OBB had substantial impacts on surface PM<sub>2.5</sub> concentrations over CEC. Most of the OBB contributions were dominated by OCSB, especially in Henan, Anhui, Hubei, and Hunan, while other types of OBB emissions also exerted influence in Jiangxi, Zhejiang, and Fujian. With the </span><span>concentration-weighted trajectory (CWT) method, potential OCSB sources leading to severe haze in Henan, Anhui, Hubei, and Hunan were pinpointed. The results show that the OCSB emissions in Henan and Anhui can cause haze not only locally but also regionally through regional transport. </span><span>Combining with meteorological analyses, we can find that surface weather patterns played a cardinal role in reshaping spatial and temporal characteristics of PM<sub>2.5</sub> concentrations. Stationary high-pressure systems over CEC enhanced local PM<sub>2.5</sub> concentrations in Henan and Anhui. Then, with the evolution of meteorological patterns, Hubei and Hunan in the low-pressure system were impacted by areas enveloped in the high-pressure system. These results suggest that policymakers should strictly undertake interprovincial joint enforcement actions to prohibit irregular OBB, especially OCSB over CEC. Constrained OBB emissions can, to a large extent, supplement estimations derived from satellite retrievals as well as reduce overestimates of bottom-up methods.</span></p>


2019 ◽  
Author(s):  
Khalid Mehmood ◽  
Yujie Wu ◽  
Liqiang Wang ◽  
Shaocai Yu ◽  
Pengfei Li ◽  
...  

Abstract. Open biomass burning (OBB) has large potential in triggering local and regional severe haze with elevated fine particulate matter (PM2.5) concentrations and could thus deteriorate ambient air quality and threaten human health. Open crop straw burning (OCSB), as a critical part of OBB, emits abundant gaseous and particulate pollutants, especially in fields with intensive agriculture, such as central and eastern China (CEC). However, there are high uncertainties in current OCSB and other types of OBB emissions that could drive chemical transport models (CTMs) to fail to evaluate their respective impacts on haze formations accurately. Satellite retrievals provide an attractive alternative that can be used to simultaneously quantify emissions of OCSB and other types of OBB, such as the Fire INventory from NCAR version 1.5 (FINNv1.5), which yet generally underestimate their magnitudes due to unresolved small fires. In this study, we selected June in 2014 as our study period, which exhibited a complete evolution process of OBB (from June 1 to 19) over CEC. During this period, OBB was dominated by OCSB in terms of the number of fire hotspot and associated emissions (74 ~ 94 %), most of which were located at Henan and Anhui (> 60 %) with intensive enhancements from June 5 to 14 (> 80 %). It is found that OCSB presented a generally strong spatiotemporal correlation with regional haze over the central part of CEC (Henan, Anhui, Hubei, and Hunan), while other types of OBB emissions had certain influences on Jiangxi, Zhejiang, and Fujian. Based on these analyses, we established a constraining method that integrates ground PM2.5 measurements with a state-of-art fully coupled regional meteorological and chemical transport model (the two-way coupled WRF-CMAQ) in order to derive optimal OBB emissions based on FINNv1.5. It is demonstrated that these emissions could allow the model to reproduce meteorological and chemical fields over CEC during the study period, whereas original FINNv1.5 underestimated OBB emissions by 2 ~ 7 times, depending on specific spatiotemporal scales. The results show that OBB had substantial impacts on surface PM2.5 concentrations over CEC. Most of OBB contributions were dominated by OCSB, especially in Henan, Anhui, Hubei, and Hunan, while other types of OBB emissions also exerted certain influence in Jiangxi, Zhejiang, and Fujian. With the concentration-weighted trajectory (CWT) method, potential OCSB sources leading to severe haze in Henan, Anhui, Hubei, and Hunan were pinpointed. The results illustrated that the OCSB emissions in Henan and Anhui can cause haze not only locally but also regionally through regional transport. Combining with meteorological analyses, we can find that surface weather patterns played a cardinal role in reshaping spatial and temporal characteristics of PM2.5 concentrations. Stationary high-pressure systems over CEC enhanced local PM2.5 concentrations in Henan and Anhui. Then, with the evolution of meteorological patterns, Hubei and Hunan in the low-pressure system were forced to receive the pollution from areas (i.e., Henan and Anhui) enveloped in the high-pressure system. These results highlight that policymakers should strictly undertake interprovincial joint enforcement actions to prohibit irregular OBB, especially OCSB over CEC. By comparison, the constrained OBB emissions can, to a large extent, not only supplement insufficient estimations derived from satellite retrievals but also reduce overestimations of bottom-up methods.


2018 ◽  
Vol 18 (16) ◽  
pp. 11623-11646 ◽  
Author(s):  
Jian Wu ◽  
Shaofei Kong ◽  
Fangqi Wu ◽  
Yi Cheng ◽  
Shurui Zheng ◽  
...  

Abstract. Open biomass burning (OBB) has significant impacts on air pollution, climate change and potential human health. OBB has gathered wide attention but with little focus on the annual variation of pollutant emission. Central and eastern China (CEC) is one of the most polluted regions in China. This study aims to provide a state-of-the-art estimation of the pollutant emissions from OBB in CEC from 2003 to 2015, by adopting the satellite observation dataset – the burned area product (MCD64Al) and the active fire product (MCD14 ML) – along with local biomass data (updated biomass loading data and high-resolution vegetation data) and local emission factors. The successful adoption of the double satellite dataset for long-term estimation of pollutants from OBB with a high spatial resolution can support the assessing of OBB on regional air quality, especially for harvest periods or dry seasons. It is also useful to evaluate the effects of annual OBB management policies in different regions. Here, monthly emissions of pollutants were estimated and allocated into a 1×1 km spatial grid for four types of OBB including grassland, shrubland, forest and cropland. From 2003 to 2015, the emissions from forest, shrubland and grassland fire burning had an annual fluctuation, whereas the emissions from crop straw burning steadily increased. The cumulative emissions of organic carbon (OC), elemental carbon (EC), methane (CH4), nitric oxide (NOx), non-methane volatile organic compounds (NMVOCs), sulfur dioxide (SO2), ammonia (NH3), carbon monoxide (CO), carbon dioxide (CO2) and fine particles (PM2.5) were 3.64×103, 2.87×102, 3.05×103, 1.82×103, 6.4×103, 2.12×102, 4.67×102, 4.59×104, 9.39×105 and 4.13×103 Gg in these years, respectively. Crop straw burning was the largest contributor for all pollutant emissions, by 84 %–96 %. For the forest, shrubland and grassland fire burning, forest fire burning emissions contributed the most, and emissions from grassland fire were negligible due to little grass coverage in this region. High pollutant emissions concentrated in the connection area of Shandong, Henan, Jiangsu and Anhui, with emission intensity higher than 100 tons per square kilometer, which was related to the frequent agricultural activities in these regions. Peak emission of pollutants occurred during summer and autumn harvest periods including May, June, September and October, during which ∼50 % of the total pollutant emissions were emitted in these months. This study highlights the importance of controlling the crop straw burning emissions. From December to March, the crop residue burning emissions decreased, while the emissions from forest, shrubland and grassland exhibited their highest values, leading to another small peak in emissions of pollutants. Obvious regional differences in seasonal variations of OBB were observed due to different local biomass types and environmental conditions. Rural population, agricultural output, economic levels, local burning habits, social customs and management policies were all influencing factors for OBB emissions.


2018 ◽  
Author(s):  
Jian Wu ◽  
Shaofei Kong ◽  
Fangqi Wu ◽  
Yi Cheng ◽  
Shurui Zheng ◽  
...  

Abstract. Open biomass burning (OBB) has significant impacts on air pollution, climate change and potential human health. OBB has raised wide attention but with few focus on the annual variation of pollutant emission. Central and Eastern China (CEC) is one of the most polluted regions in China. This study aims to provide a state-of the-art estimation of the pollutant emissions from OBB in CEC from 2003 to 2015, by adopting the satellite observation dataset (the burned area product (MCD64Al) and the active fire product (MCD14 ML)), local biomass data (updated biomass loading data and high-resolution vegetation data) and local emission factors. Monthly emissions of pollutants were estimated and allocated into a 1 × 1 km spatial grid for four types of OBB including grassland, shrubland, forest and cropland. From 2003 to 2015, the emissions from forest, shrubland and grassland fire burning had a minor annual variation whereas the emissions from crop straw burning steadily increased. The cumulative emissions of OC, EC, CH4, NOX, NMVOC, SO2, NH3, CO, CO2 and PM2.5 were 3.64 × 103, 2.87 × 102, 3.05 × 103, 1.82 × 103, 6.4 × 103, 2.12 × 102, 4.67 × 103, 4.59 × 104, 9.39 × 105 and 4.13 × 102 Gg in these years, respectively. For cropland, corn straw burning was the largest contributor for all pollutant emissions, by 84 %–96 %. Among the forest, shrubland, grassland fire burning, forest fire burning emissions contributed the most and emissions from grassland fire was negligible due to few grass coverage in this region. High pollutant emissions were populated in the connection area of Shandong, Henan, Jiangsu and Anhui, with emission intensity higher than 100 ton per pixel, which was related to the frequent agricultural activities in these regions. The monthly emission peak of pollutants occurred in summer and autumn harvest periods including May, June, September and October, at which period ~ 50 % of pollutants were emitted for OBB. This study highlights the importance in controlling the crops straw burning emission. From December to March of the next year, the crop residue burning emissions decreased, while the emissions from forest, shrubland and grassland exhibited their highest values, leading to another small peak emissions of pollutants. Obvious regional differences in seasonal variations of OBB were observed due to different local biomass types and environmental conditions. Rural population, agricultural output, local burning habits, anthropological activities and management policies are all influence factors for OBB emissions. The successful adoption of double satellite dataset for long term estimation of pollutants from OBB with a high spatial resolution can support the assessing of OBB on regional air-quality, especially for harvest periods or dry seasons. It is also useful to evaluate the effects of annual OBB management policies in different regions.


2016 ◽  
Author(s):  
Ying Zhou ◽  
Xiaofan Xing ◽  
Jianlei Lang ◽  
Dongsheng Chen ◽  
Shuiyuan Cheng ◽  
...  

Abstract. Biomass burning injects many different gases and aerosols into the atmosphere, which could have a harmful effect on air quality, climate change and human health. In this study, a comprehensive biomass burning emission inventory including crop straw domestic combustion and in field burning, firewood and livestock excrement combustion, forest and grassland fire was developed for mainland China in 2012 based on county-level activity data and updated source-specific emission factors (EFs). The emission inventory within 1 × 1 km grid was generated using geographical information system (GIS) technology according to source-based spatial surrogates. A range of key information related to emission estimation (e.g., province-specific proportion of crop straw domestic burning and open burning, detailed firewood combustion quantities, uneven temporal distribution coefficient) was obtained from field investigation, systematic combing of the latest research and regression analysis of statistical data. The established emission inventory includes the major precursors of complex pollution, greenhouse gases and heavy metal released from biomass burning. The results show that the emissions of SO2, NOx, PM10, PM2.5, VOC, NH3, CO, EC, OC, CO2, CH4 and Hg in 2012 were 332.8 Gg, 972.5 Gg, 3676.0 Gg, 3479.4 Gg, 3429.6 Gg, 395.8 Gg, 33987.9 Gg, 367.1 Gg, 1151.7 Gg, 665989.0 Gg, 2076.5 Gg and 3.65 Mg, respectively. Indoor and outdoor burning of straw and firewood combustion are identified as the dominant biomass burning sources. The largest contributing source is different for various pollutants. Straw indoor burning is the major source of SO2, CO, CH4 and Hg emission; firewood contributes most to EC and NH3 emission. Corn, rice and wheat represent the major crop straws, with their total emission contribution exceeding 80 % for each pollutant. Corn straw burning has the greatest contribution to EC, NOx and SO2 emissions; rice straw burning is dominant contributor to CO2, VOC, CH4 and NH3 emissions. Heilongjiang, Shandong, and Henan provinces located in northeast and central-south region of China have higher emissions. Gridded emissions, which were obtained through spatial allocation based on the gridded rural population and fire point data from emission inventory at county resolution, could better represent the actual situation. Higher biomass burning emissions are concentrated in the areas with greater agricultural and rural activity. The temporal distribution shows that higher emissions occurred in April, September, and October during the whole year. There’s regional difference in monthly variation due to the diversity of main planted crop and the climate conditions. Furthermore, PM2.5 component results showed that OC, Cl−, EC, K+, NH4+, K element and SO42− are the main PM2.5 species accounting for 80 % of the total emissions. The species with relatively higher contribution to VOCs emission including ethylene, propylene, toluene, mp-xylene and halocarbons which are key species for the formation of secondary air pollution. The detailed biomass burning emission inventory generated by this study could provide useful information for air quality modelling and support the development of appropriate pollution control strategies.


2018 ◽  
Vol 11 (3) ◽  
pp. 959-988 ◽  
Author(s):  
Takashi Sekiya ◽  
Kazuyuki Miyazaki ◽  
Koji Ogochi ◽  
Kengo Sudo ◽  
Masayuki Takigawa

Abstract. We evaluate global tropospheric nitrogen dioxide (NO2) simulations using the CHASER V4.0 global chemical transport model (CTM) at horizontal resolutions of 0.56, 1.1, and 2.8∘. Model evaluation was conducted using satellite tropospheric NO2 retrievals from the Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment-2 (GOME-2) and aircraft observations from the 2014 Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ). Agreement against satellite retrievals improved greatly at 1.1 and 0.56∘ resolutions (compared to 2.8∘ resolution) over polluted and biomass burning regions. The 1.1∘ simulation generally captured the regional distribution of the tropospheric NO2 column well, whereas 0.56∘ resolution was necessary to improve the model performance over areas with strong local sources, with mean bias reductions of 67 % over Beijing and 73 % over San Francisco in summer. Validation using aircraft observations indicated that high-resolution simulations reduced negative NO2 biases below 700 hPa over the Denver metropolitan area. These improvements in high-resolution simulations were attributable to (1) closer spatial representativeness between simulations and observations and (2) better representation of large-scale concentration fields (i.e., at 2.8∘) through the consideration of small-scale processes. Model evaluations conducted at 0.5 and 2.8∘ bin grids indicated that the contributions of both these processes were comparable over most polluted regions, whereas the latter effect (2) made a larger contribution over eastern China and biomass burning areas. The evaluations presented in this paper demonstrate the potential of using a high-resolution global CTM for studying megacity-scale air pollutants across the entire globe, potentially also contributing to global satellite retrievals and chemical data assimilation.


2017 ◽  
Author(s):  
Takashi Sekiya ◽  
Kazuyuki Miyazaki ◽  
Koji Ogochi ◽  
Kengo Sudo ◽  
Masayuki Takigawa

Abstract. We evaluate global tropospheric nitrogen dioxide (NO2) simulations using the CHASER V4.0 global chemical transport model (CTM) at horizontal resolutions ranging from 0.56° to 2.8°. Model evaluation was conducted using satellite tropospheric NO2 retrievals from the Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment-2 (GOME-2), and aircraft observations from the 2014 Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ). Agreement against satellite retrievals improved greatly at 0.56° and 1.1° resolutions (compared to 2.8° resolution) over polluted and biomass burning regions. A resolution of 0.56° was necessary to improve model performance over areas with strong local sources, with mean bias reductions of 67 % over Beijing, 62 % over Tokyo, and 73 % over San Francisco in summer. Validation using aircraft observations indicated that high-resolution simulations reduced negative NO2 biases below 700 hPa over the Denver metropolitan area. These improvements in high-resolution simulations were attributable to (1) closer spatial representativeness between simulations and observations and (2) better representation of large-scale concentration fields (i.e., at 2.8°) through consideration of small-scale processes. Model evaluations conducted at 0.5°- and 2.8°-bin grids indicated that the contributions of both these processes were comparable over most polluted regions, whereas the latter effect (2) made a larger contribution (of up to 90 %) over eastern China and biomass burning areas. The evaluations presented in this paper demonstrate the potential of using a high-resolution global CTM for studying megacity-scale air pollutants across the entire globe, potentially also contributing to global satellite retrievals and chemical data assimilation.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 329
Author(s):  
Albenis Pérez-Alarcón ◽  
José C. Fernández-Alvarez ◽  
Rogert Sorí ◽  
Raquel Nieto ◽  
Luis Gimeno

The combined effect of the sea surface temperature (SST) and the North Atlantic subtropical high-pressure system (NASH) in the interannual variability of the genesis of tropical cyclones (TCs) and landfalling in the period 1980–2019 is explored in this study. The SST was extracted from the Centennial Time Scale dataset from the National Oceanic and Atmospheric Administration (NOAA), and TC records were obtained from the Atlantic Hurricane Database of the NOAA/National Hurricane Center. The genesis and landfalling regions were objectively clustered for this analysis. Seven regions of TC genesis and five for landfalling were identified. Intercluster differences were observed in the monthly frequency distribution and annual variability, both for genesis and landfalling. From the generalized least square multiple regression model, SST and NASH (intensity and position) covariates can explain 22.7% of the variance of the frequency of TC genesis, but it is only statistically significant (p < 0.1) for the NASH center latitude. The SST mostly modulates the frequency of TCs formed near the West African coast, and the NASH latitudinal variation affects those originated in the Lesser Antilles arc. For landfalling, both covariates explain 38.7% of the variance; however, significant differences are observed in the comparison between each region. With a statistical significance higher than 90%, SST and NASH explain 33.4% of the landfalling variability in the archipelago of the Bahamas and central–eastern region of Cuba. Besides, landfalls in the Gulf of Mexico and Central America seem to be modulated by SST. It was also found there was no statistically significant relationship between the frequency of genesis and landfalling with the NASH intensity. However, the NASH structure modulates the probability density of the TCs trajectory that make landfall once or several times in their lifetime. Thus, the NASH variability throughout a hurricane season affects the TCs trajectory in the North Atlantic basin. Moreover, we found that the landfalling frequency of TCs formed near the West Africa coast and the central North Atlantic is relatively low. Furthermore, the SST and NASH longitude center explains 31.6% (p < 0.05) of the variance of the landfalling intensity in the archipelago of the Bahamas, while the SST explains 26.4% (p < 0.05) in Central America. Furthermore, the 5-year moving average filter revealed decadal and multidecadal variability in both genesis and landfalling by region. Our findings confirm the complexity of the atmospheric processes involved in the TC genesis and landfalling.


Sign in / Sign up

Export Citation Format

Share Document