scholarly journals The HD(CP)2 Observational Prototype Experiment HOPE – An Overview

Author(s):  
Andreas Macke ◽  
Patric Seifert ◽  
Holger Baars ◽  
Christoph Beekmans ◽  
Andreas Behrendt ◽  
...  

Abstract. The "HD(CP)2 Observational Prototype Experiment" (HOPE) was executed as a major 2-month field experiment in Jülich, Germany, performed in April and May 2013, followed by a smaller campaign in Melpitz, Germany in September 2013. HOPE has been designed to provide a critical evaluation of the new German community atmospheric Icosahedral non-hydrostatic (ICON) model at the scale of the model simulations and further to provide information on land-surface-atmospheric boundary layer exchange, cloud and precipitation processes as well as on sub-grid variability and microphysical properties that are subject to parameterizations. HOPE focuses on the onset of clouds and precipitation in the convective atmospheric boundary layer. The paper summarizes the instrument set-ups, the intensive observation periods as well as example results from both campaigns. HOPE-Jülich instrumentation included a radio sounding station, 4 Doppler lidars, 4 Raman lidars (3, 3, and 4 of these provide temperature, water vapor, and particle backscatter data, respectively), 1 water vapour differential absorption lidar, 3 cloud radars, 5 microwave radiometers, 3 rain radars, 6 sky imagers, 99 pyranometers, and 5 Sun photometers operated in synergy at different supersites. The HOPE-Melpitz campaign combined ground-based remote sensing of aerosols and clouds with helicopter- and balloon-based in-situ observations in the atmospheric column and at the surface. HOPE provided an unprecedented collection of atmospheric dynamical, thermodynamical, and micro- and macrophysical properties of aerosols, clouds and precipitation with high spatial and temporal resolution within a cube of approximately 10 × 10 × 10 km3. HOPE data will significantly contribute to our understanding of boundary layer dynamics and the formation of clouds and precipitation. The datasets are made available through a dedicated data portal.

2017 ◽  
Vol 17 (7) ◽  
pp. 4887-4914 ◽  
Author(s):  
Andreas Macke ◽  
Patric Seifert ◽  
Holger Baars ◽  
Christian Barthlott ◽  
Christoph Beekmans ◽  
...  

Abstract. The HD(CP)2 Observational Prototype Experiment (HOPE) was performed as a major 2-month field experiment in Jülich, Germany, in April and May 2013, followed by a smaller campaign in Melpitz, Germany, in September 2013. HOPE has been designed to provide an observational dataset for a critical evaluation of the new German community atmospheric icosahedral non-hydrostatic (ICON) model at the scale of the model simulations and further to provide information on land-surface–atmospheric boundary layer exchange, cloud and precipitation processes, as well as sub-grid variability and microphysical properties that are subject to parameterizations. HOPE focuses on the onset of clouds and precipitation in the convective atmospheric boundary layer. This paper summarizes the instrument set-ups, the intensive observation periods, and example results from both campaigns. HOPE-Jülich instrumentation included a radio sounding station, 4 Doppler lidars, 4 Raman lidars (3 of them provide temperature, 3 of them water vapour, and all of them particle backscatter data), 1 water vapour differential absorption lidar, 3 cloud radars, 5 microwave radiometers, 3 rain radars, 6 sky imagers, 99 pyranometers, and 5 sun photometers operated at different sites, some of them in synergy. The HOPE-Melpitz campaign combined ground-based remote sensing of aerosols and clouds with helicopter- and balloon-based in situ observations in the atmospheric column and at the surface. HOPE provided an unprecedented collection of atmospheric dynamical, thermodynamical, and micro- and macrophysical properties of aerosols, clouds, and precipitation with high spatial and temporal resolution within a cube of approximately 10  ×  10  ×  10 km3. HOPE data will significantly contribute to our understanding of boundary layer dynamics and the formation of clouds and precipitation. The datasets have been made available through a dedicated data portal. First applications of HOPE data for model evaluation have shown a general agreement between observed and modelled boundary layer height, turbulence characteristics, and cloud coverage, but they also point to significant differences that deserve further investigations from both the observational and the modelling perspective.


2012 ◽  
Vol 12 (4) ◽  
pp. 9331-9375 ◽  
Author(s):  
R. H. H. Janssen ◽  
J. Vilà-Guerau de Arellano ◽  
L. N. Ganzeveld ◽  
P. Kabat ◽  
J. L. Jimenez ◽  
...  

Abstract. We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the model for a case study in Hyytiälä, Finland, and find that it is able to well reproduce the observed dynamics and gas-phase chemistry. We show that the exchange of organic aerosol between the free troposphere and the boundary layer (entrainment) must be taken into account in order to explain the observed diurnal cycle in organic aerosol (OA) concentration. An examination of the budgets of organic aerosol and terpene concentration shows that the former is dominated by entrainment, while the latter is mainly driven by emission and chemical transformation. We systematically examine the role of the land surface, which governs both the surface energy balance partitioning and terpene-emissions, and the large-scale atmospheric process of vertical subsidence. Entrainment is especially important for the dilution of organic aerosol concentrations under conditions of dry soils and low terpene-emissions. Subsidence suppresses boundary layer growth while enhancing entrainment. Therefore it influences the relationship between organic aerosol and terpene-concentrations. Our findings indicate that the diurnal evolution of SOA in the boundary layer is the result of coupled effects of the land surface, dynamics of the atmospheric boundary layer, chemistry, and free troposphere conditions. This has potentially some consequences for the design of both field campaigns and large-scale modeling studies.


2013 ◽  
Vol 10 (3) ◽  
pp. 210-217

In this work preliminary results on the characteristics of the turbulent structure of the Marine Atmospheric Boundary Layer (MABL) are presented. Measurements used here were conducted in the framework of the Coupled Boundary Layers Air-Sea Transfer Experiment in Low Wind (CBLAST-Low) project. A number of in situ (fast and slow sensors) and remote sensing (SODAR) instruments were deployed on the coast of Nantucket Island, MA, USA. Measurements of the mean wind, the variances of the three wind components, the atmospheric stability and the momentum fluxes from the acoustic radar (SODAR) revealed the variation of the depth, the turbulent characteristics, and the stability of the MABL in response to the background flow. More specifically, under light south-southwesterly winds, which correspond to the MABL wind directions, the atmosphere was very stable and low values of turbulence were observed. Under moderate to strong southwesterly flow, less stable and neutral atmospheric conditions appeared and the corresponding turbulent quantities were characterized by higher values. The SODAR measurements, with high temporal and spatial resolution, also indicated large magnitude of momentum fluxes at higher levels, presumably associated with the shear forcing near the developed low-level jet. The measurements from the in-situ instrumentation confirmed that the MABL typically has small negative momentum and sensible heat fluxes consistent with stable to neutral stratification while strong diurnal variations were typical for the land surface Atmospheric Boundary Layer (ABL). The developed internal ABL at the experimental site was in general less than 10m during the night and could reach 15m heights during the day, particularly under low-wind conditions.


2012 ◽  
Vol 12 (15) ◽  
pp. 6827-6843 ◽  
Author(s):  
R. H. H. Janssen ◽  
J. Vilà-Guerau de Arellano ◽  
L. N. Ganzeveld ◽  
P. Kabat ◽  
J. L. Jimenez ◽  
...  

Abstract. We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the model for a case study in Hyytiälä, Finland, and find that it is able to satisfactorily reproduce the observed dynamics and gas-phase chemistry. We show that the exchange of organic aerosol between the free troposphere and the boundary layer (entrainment) must be taken into account in order to explain the observed diurnal cycle in organic aerosol (OA) concentration. An examination of the budgets of organic aerosol and terpene concentrations show that the former is dominated by entrainment, while the latter is mainly driven by emission and chemical transformation. We systematically investigate the role of the land surface, which governs both the surface energy balance partitioning and terpene emissions, and the large-scale atmospheric process of vertical subsidence. Entrainment is especially important for the dilution of organic aerosol concentrations under conditions of dry soils and low terpene emissions. Subsidence suppresses boundary layer growth while enhancing entrainment. Therefore, it influences the relationship between organic aerosol and terpene concentrations. Our findings indicate that the diurnal evolution of secondary organic aerosols (SOA) in the boundary layer is the result of coupled effects of the land surface, dynamics of the atmospheric boundary layer, chemistry, and free troposphere conditions. This has potentially some consequences for the design of both field campaigns and large-scale modeling studies.


2008 ◽  
Vol 3 (Special Issue No. 1) ◽  
pp. S89-S94 ◽  
Author(s):  
A. Kleidon

The hydrologic cycle is a system far from thermodynamic equilibrium that is characterized by its rate of entropy production in the climatological mean steady state. Over land, the hydrologic cycle is strongly affected by the presence of terrestrial vegetation. In order to investigate the role of the biota in the hydrologic cycle, it is critical to investigate the consequences of biotic effects from this thermodynamic perspective. Here I quantify entropy production by evapotranspiration with a climate system model of intermediate complexity and estimate its sensitivity to vegetation cover. For present-day conditions, the global mean entropy production of evaporation is 8.4 mW/m<sup>2</sup>/K, which is about 1/3 of the estimated entropy production of the whole hydrologic cycle. On average, ocean surfaces generally produce more than twice as much entropy as land surfaces. On land, high rates of entropy production of up to 16 mW/m<sup>2</sup>/K are found in regions of high evapotranspiration, although relative humidity of the atmospheric boundary layer is also an important factor. With an additional model simulation of a “Desert” simulation, where the effects of vegetation on land surface functioning is removed, I estimate the sensitivity of these entropy production rates to the presence of vegetation. Land averaged evapotranspiration decreases from 2.4 to 1.4 mm/d, while entropy production is reduced comparatively less from 4.2 to 3.1 mW/m<sup>2</sup>/K. This is related to the reduction in relative humidity of the atmospheric boundary layer as a compensatory effect, and points out the importance of a more complete treatment of entropy production calculations to investigate the role of biotic effects on Earth system functioning.


2020 ◽  
Author(s):  
Brian Butterworth ◽  
Ankur Desai ◽  
Sreenath Paleri ◽  
Stefan Metzger ◽  
David Durden ◽  
...  

&lt;p&gt;Land surface heterogeneity influences patterns of sensible and latent heat flux, which in turn affect processes in the atmospheric boundary layer. However, gridded atmospheric models often fail to incorporate the influence of land surface heterogeneity due to differences between the temporal and spatial scales of models compared to the local, sub-grid processes. Improving models requires the scaling of surface flux measurements; a process made difficult by the fact that surface measurements usually find an imbalance in the energy budget.&lt;/p&gt;&lt;p&gt;The Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD19) was an observational experiment designed to investigate how the atmospheric boundary layer responds to scales of spatial heterogeneity in surface-atmosphere heat and water exchanges. The campaign was conducted from June &amp;#8211; October 2019, measuring surface energy fluxes over a heterogeneous forest ecosystem as fluxes transitioned from latent heat-dominated summer through sensible heat-dominated fall. Observations were made by ground, airborne, and satellite platforms within the 10 x 10 km study region, which was chosen to match the scale of a typical model grid cell. The spatial distribution of energy fluxes was observed by an array of 20 eddy covariance towers and a low-flying aircraft. Mesoscale atmospheric properties were measured by a suite of LiDAR and sounding instruments, measuring winds, water vapor, temperature, and boundary layer development. Plant phenology was measured in-situ and mapped remotely using hyperspectral imaging.&lt;/p&gt;&lt;p&gt;The dense set of multi-scale observations of land-atmosphere exchange collected during the CHEESEHEAD field campaign permits combining the spatial and temporal distribution of energy fluxes with mesoscale surface and atmospheric properties. This provides an unprecedented data foundation to evaluate theoretical explanations of energy balance non-closure, as well as to evaluate methods for scaling surface energy fluxes for improved model-data comparison. Here we show how fluxes calculated using a spatial eddy covariance technique across the 20-tower network compare to those of standard temporal eddy covariance fluxes in order to characterize of the spatial representativeness of single tower eddy covariance measurements. Additionally, we show how spatial EC fluxes can be used to better understand the energy balance over heterogeneous ecosystems.&lt;/p&gt;


2020 ◽  
Author(s):  
Jun Yin ◽  
Amilcare Porporato

&lt;p&gt;By linearizing the saturation water vapor curve, Penman (1948) not only found the famous explicit approximation of wet-surface evaporation but also obtained a less well-known expression of surface temperature. Here the latter has been taken into the slab model of Atmospheric Boundary Layer (ABL) to derive multiple analytical approximations of ABL dynamics, which share the features of the Penman equation with evaporation driven by energy and drying power of the air. Noticing that these two parts of evaporation are proportional to each other within the Priestley-Taylor approximation at sub-daily timescale, a unified framework is obtained that links the Penman approach and Priestley-Taylor method to the diurnal behaviors of ABL. The resulting model is useful for diagnosing the land-atmosphere interactions.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document