scholarly journals Impact of humidity biases on light precipitation occurrence: observations versus simulations

Author(s):  
Sophie Bastin ◽  
Philippe Drobinski ◽  
Marjolaine Chiriaco ◽  
Olivier Bock ◽  
Romain Roehrig ◽  
...  

Abstract. This work uses a network of GPS stations over Europe from which a homogenised integrated water vapor (IWV) dataset has been retrieved, completed with colocated temperature and precipitation measurements over specific stations to i) estimate the biases of six regional climate models over Europe in terms of humidity; ii) understand their origins; iii) and finally assess the impact of these biases on the frequency of occurrence of precipitation. The evaluated simulations have been performed in the framework of HYMEX/Med-CORDEX programs and cover the Mediterranean area and part of Europe at horizontal resolutions of 50 to 12 km. The analysis shows that models tend to overestimate the low values of IWV and the use of the nudging technique reduces the differences between GPS and simulated IWV. Results suggest that physics of models mostly explain the mean biases, while dynamics affects the variability. The land surface/atmosphere exchanges affect the estimation of IWV over most part of Europe, especially in summer. The limitations of the models to represent these processes explain part of their baises in IWV. However, models correctly simulate the dependance between IWV and temperature, and specifically the deviation that this relationship experiences regarding the Clausius-Clapeyron law after a critical value of temperature (Tbreak). The high spatial variability of Tbreak indicates that it has a strong dependence on local processes which drive the local humidity sources. This explains why the maximum values of IWV are not necessarely observed over warmer area, that are often dry area. Finally, it is shown over SIRTA observatory (near Paris) that the frequency of occurrence of light precipitation is strongly conditioned by the biases in IWV and by the precision of the models to reproduce the distribution of IWV as a function of the temperature. The results of the models indicate that a similar dependence occurs in other areas of Europe, especially where precipitation has a predominantly convective character. According to the observations, for each range of temperature, there is a critical value of IWV from which precipitation picks up. The critical values and the probability to exceed them are simulated with a bias that depends on the model. Those models which present too often light precipitation generally show lower critical values and higher probability to exceed them.

2019 ◽  
Vol 19 (3) ◽  
pp. 1471-1490 ◽  
Author(s):  
Sophie Bastin ◽  
Philippe Drobinski ◽  
Marjolaine Chiriaco ◽  
Olivier Bock ◽  
Romain Roehrig ◽  
...  

Abstract. This work uses a network of GPS stations over Europe from which a homogenized integrated water vapor (IWV) dataset has been retrieved, completed with colocated temperature and precipitation measurements over specific stations to (i) estimate the biases of six regional climate models over Europe in terms of humidity; (ii) understand their origins; and (iii) finally assess the impact of these biases on the frequency of occurrence of precipitation. The evaluated simulations have been performed in the framework of HYMEX/Med-CORDEX programs and cover the Mediterranean area and part of Europe at horizontal resolutions of 50 to 12 km. The analysis shows that models tend to overestimate the low values of IWV and the use of the nudging technique reduces the differences between GPS and simulated IWV. Results suggest that physics of models mostly explain the mean biases, while dynamics affects the variability. The land surface–atmosphere exchanges affect the estimation of IWV over most part of Europe, especially in summer. The limitations of the models to represent these processes explain part of their biases in IWV. However, models correctly simulate the dependance between IWV and temperature, and specifically the deviation that this relationship experiences regarding the Clausius–Clapeyron law after a critical value of temperature (Tbreak). The high spatial variability of Tbreak indicates that it has a strong dependence on local processes which drive the local humidity sources. This explains why the maximum values of IWV are not necessarily observed over warmer areas, which are often dry areas. Finally, it is shown over the SIRTA observatory (near Paris) that the frequency of occurrence of light precipitation is strongly conditioned by the biases in IWV and by the precision of the models to reproduce the distribution of IWV as a function of the temperature. The results of the models indicate that a similar dependence occurs in other areas of Europe, especially where precipitation has a predominantly convective character. According to the observations, for each range of temperature, there is a critical value of IWV from which precipitation starts to increase. The critical values and the probability of exceeding them are simulated with a bias that depends on the model. Those models, which generally present light precipitation too often, show lower critical values and higher probability of exceeding them.


2020 ◽  
Vol 59 (6) ◽  
pp. 1109-1123 ◽  
Author(s):  
François DuchÊne ◽  
Bert Van Schaeybroeck ◽  
Steven Caluwaerts ◽  
Rozemien De Troch ◽  
Rafiq Hamdi ◽  
...  

AbstractThe demand of city planners for quantitative information on the impact of climate change on the urban environment is increasing. However, such information is usually extracted from decadelong climate projections generated with global or regional climate models (RCMs). Because of their coarse resolution and unsuitable physical parameterization, however, their model output is not adequate to be used at city scale. A full dynamical downscaling to city level, on the other hand, is computationally too expensive for climatological time scales. A statistical–dynamical computationally inexpensive method is therefore proposed that approximates well the behavior of the full dynamical downscaling approach. The approach downscales RCM simulations using the combination of an RCM at high resolution (H-RES) and a land surface model (LSM). The method involves the setup of a database of urban signatures by running an H-RES RCM with and without urban parameterization for a relatively short period. Using an analog approach, these signatures are first selectively added to the long-term RCM data, which are then used as forcing for an LSM using an urban parameterization in a stand-alone mode. A comparison with a full dynamical downscaling approach is presented for the city of Brussels, Belgium, for 30 summers with the combined ALADIN–AROME model (ALARO-0) coupled to the Surface Externalisée model (SURFEX) as H-RES RCM and SURFEX as LSM. The average bias of the nocturnal urban heat island during heat waves is vanishingly small, and the RMSE is strongly reduced. Not only is the statistical–dynamical approach able to correct the heat-wave number and intensities, it can also improve intervariable correlations and multivariate and temporally correlated indices, such as Humidex.


2015 ◽  
Vol 8 (7) ◽  
pp. 2285-2298 ◽  
Author(s):  
A. I. Stegehuis ◽  
R. Vautard ◽  
P. Ciais ◽  
A. J. Teuling ◽  
D. G. Miralles ◽  
...  

Abstract. Many climate models have difficulties in properly reproducing climate extremes, such as heat wave conditions. Here we use the Weather Research and Forecasting (WRF) regional climate model with a large combination of different atmospheric physics schemes, in combination with the NOAH land-surface scheme, with the goal of detecting the most sensitive physics and identifying those that appear most suitable for simulating the heat wave events of 2003 in western Europe and 2010 in Russia. In total, 55 out of 216 simulations combining different atmospheric physical schemes have a temperature bias smaller than 1 °C during the heat wave episodes, the majority of simulations showing a cold bias of on average 2–3 °C. Conversely, precipitation is mostly overestimated prior to heat waves, and shortwave radiation is slightly overestimated. Convection is found to be the most sensitive atmospheric physical process impacting simulated heat wave temperature across four different convection schemes in the simulation ensemble. Based on these comparisons, we design a reduced ensemble of five well performing and diverse scheme configurations, which may be used in the future to perform heat wave analysis and to investigate the impact of climate change during summer in Europe.


2005 ◽  
Vol 51 (5) ◽  
pp. 1-4
Author(s):  
B. van den Hurk ◽  
J. Beersma ◽  
G. Lenderink

Simulations with regional climate models (RCMs), carried out for the Rhine basin, have been analyzed in the context of implications of the possible future discharge of the Rhine river. In a first analysis, the runoff generated by the RCMs is compared to observations, in order to detect the way the RCMs treat anomalies in precipitation in their land surface component. A second analysis is devoted to the frequency distribution of area averaged precipitation, and the impact of selection of various driving global climate models.


2021 ◽  
Vol 21 (18) ◽  
pp. 14309-14332
Author(s):  
Peter Huszar ◽  
Jan Karlický ◽  
Jana Marková ◽  
Tereza Nováková ◽  
Marina Liaskoni ◽  
...  

Abstract. Urban areas are hot spots of intense emissions, and they influence air quality not only locally but on a regional or even global scale. The impact of urban emissions over different scales depends on the dilution and chemical transformation of the urban plumes which are governed by the local- and regional-scale meteorological conditions. These are influenced by the presence of urbanized land surface via the so-called urban canopy meteorological forcing (UCMF). In this study, we investigate for selected central European cities (Berlin, Budapest, Munich, Prague, Vienna and Warsaw) how the urban emission impact (UEI) is modulated by the UCMF for present-day climate conditions (2015–2016) using two regional climate models, the regional climate models RegCM and Weather Research and Forecasting model coupled with Chemistry (WRF-Chem; its meteorological part), and two chemistry transport models, Comprehensive Air Quality Model with Extensions (CAMx) coupled to either RegCM and WRF and the “chemical” component of WRF-Chem. The UCMF was calculated by replacing the urbanized surface by a rural one, while the UEI was estimated by removing all anthropogenic emissions from the selected cities. We analyzed the urban-emission-induced changes in near-surface concentrations of NO2, O3 and PM2.5. We found increases in NO2 and PM2.5 concentrations over cities by 4–6 ppbv and 4–6 µg m−3, respectively, meaning that about 40 %–60 % and 20 %–40 % of urban concentrations of NO2 and PM2.5 are caused by local emissions, and the rest is the result of emissions from the surrounding rural areas. We showed that if UCMF is included, the UEI of these pollutants is about 40 %–60 % smaller, or in other words, the urban emission impact is overestimated if urban canopy effects are not taken into account. In case of ozone, models due to UEI usually predict decreases of around −2 to −4 ppbv (about 10 %–20 %), which is again smaller if UCMF is considered (by about 60 %). We further showed that the impact on extreme (95th percentile) air pollution is much stronger, and the modulation of UEI is also larger for such situations. Finally, we evaluated the contribution of the urbanization-induced modifications of vertical eddy diffusion to the modulation of UEI and found that it alone is able to explain the modeled decrease in the urban emission impact if the effects of UCMF are considered. In summary, our results showed that the meteorological changes resulting from urbanization have to be included in regional model studies if they intend to quantify the regional footprint of urban emissions. Ignoring these meteorological changes can lead to the strong overestimation of UEI.


2020 ◽  
Author(s):  
Peter Huszar ◽  
Jan Karlický ◽  
Jana Ďoubalová ◽  
Tereza Nováková ◽  
Kateřina Šindelářová ◽  
...  

Abstract. This paper deals with the urban land-surface impact (i.e. the urban canopy meteorological forcing; UCMF) on extreme air pollution for selected central European cities for present-day climate conditions (2015–2016) using three regional climate-chemistry models: the regional climate models RegCM and WRF-Chem (its meteorological part), the chemistry transport model CAMx coupled to either RegCM and WRF and the chemical component of WRF-Chem. Most of the studies focused on the change of average conditions or only on a selected winter and summer air pollution episode. Here we extend these studies by focusing on long term extreme air pollution levels by looking at not only the change of average values but also their high (and low) percentile values and we combine the analysis with investigating selected high pollution episodes too. As extreme air pollution is often linked to extreme values of meteorological variables (e.g. low planetary boundary layer height, low winds, high temperatures), the extreme meteorological modifications will be analyzed too. The validation of model results shows reasonable model performance for regional scale temperature and precipitation. Ozone is overestimated by about 10–20 μg m−3, on the other hand, extreme summertime ozone values are underestimated by all models. Modeled nitrogen dioxide (NO2) concentrations are well correlated with observations, but results are marked with a systematic underestimation up to 20 μg m−3. PM2.5 (particles with diameter 


2014 ◽  
Vol 7 (6) ◽  
pp. 7861-7886 ◽  
Author(s):  
A. I. Stegehuis ◽  
R. Vautard ◽  
P. Ciais ◽  
A. J. Teuling ◽  
D. G. Miralles ◽  
...  

Abstract. Climate models are often not evaluated or calibrated against observations of past climate extremes, resulting in poor performance during for instance heatwave conditions. Here we use the Weather Research and Forecasting (WRF) regional climate model with a large combination of different atmospheric physics schemes, with the goal of detecting the most sensitive ones and identifying those that appear most suitable for simulating the heatwave events of 2003 in Western Europe and 2010 in Russia. 55 Out of 216 simulations combining different atmospheric physical schemes can reproduce the extreme temperatures observed during heatwaves, the majority of simulations showing a cold bias of on average 2–3 °C. Conversely, precipitation is mostly overestimated prior to heatwaves, and short wave radiation is slightly underestimated. Convection is found to be the most sensitive process impacting simulated heatwave temperature, across 4 different convection schemes in the simulation ensemble. Based on these comparisons, we design a reduced ensemble of five well performing and diverse scheme combinations, which may be used in the future to perform heatwave analysis and to investigate the impact of climate change in summer in Europe. Future studies could include the use of different land surface models together with varied physics scheme.


2018 ◽  
Vol 19 (2) ◽  
pp. 427-443 ◽  
Author(s):  
Megan D. Fowler ◽  
Michael S. Pritchard ◽  
Gabriel J. Kooperman

Abstract Global climate models are beginning to include explicit treatments of irrigation to investigate the coupling between human water use and the natural hydrologic cycle. However, differences in the formulation of irrigation schemes have produced inconsistent results, and thus the impact of irrigation on the climate system remains uncertain. To better understand the influence of irrigation on precipitation, the authors analyze simulations from the irrigation-enabled Community Land Model, version 4 (CLM4), where irrigation is applied only over a region centered on India. The addition of irrigation to the land surface has the anticipated consequence of increasing evapotranspiration locally, despite issues revealed in CLM4 of unrealistically high partitioning of irrigation water to surface runoff and unrealistically fast water drainage through the soil column. These limitations highlight a need to observationally constrain and simultaneously optimize irrigation, runoff, drainage, and evapotranspiration. Nonlocal precipitation changes as a result of Indian irrigation during the premonsoon season are examined through a hindcast framework that reveals robust hydrologic teleconnections to parts of the Arabian Sea, Bay of Bengal, and Japan on short lead times, but with strong dependence on initial synoptic conditions. On longer time scales, many of these teleconnections to Indian irrigation are easily shrouded by internal variability, but a potential geographic action center remains over the meiyu-baiu rainband indicative of a nonlocal bridge mechanism. Many of the sensitivities identified here are distinct from other global models, emphasizing the need for carefully designed irrigation-intercomparison studies.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1551
Author(s):  
Jiaqi Zhang ◽  
Xiangjin Shen ◽  
Yanji Wang ◽  
Ming Jiang ◽  
Xianguo Lu

The area and vegetation coverage of forests in Changbai Mountain of China have changed significantly during the past decades. Understanding the effects of forests and forest coverage change on regional climate is important for predicting climate change in Changbai Mountain. Based on the satellite-derived land surface temperature (LST), albedo, evapotranspiration, leaf area index, and land-use data, this study analyzed the influences of forests and forest coverage changes on summer LST in Changbai Mountain. Results showed that the area and vegetation coverage of forests increased in Changbai Mountain from 2003 to 2017. Compared with open land, forests could decrease the summer daytime LST (LSTD) and nighttime LST (LSTN) by 1.10 °C and 0.07 °C, respectively. The increase in forest coverage could decrease the summer LSTD and LSTN by 0.66 °C and 0.04 °C, respectively. The forests and increasing forest coverage had cooling effects on summer temperature, mainly by decreasing daytime temperature in Changbai Mountain. The daytime cooling effect is mainly related to the increased latent heat flux caused by increasing evapotranspiration. Our results suggest that the effects of forest coverage change on climate should be considered in climate models for accurately simulating regional climate change in Changbai Mountain of China.


2021 ◽  
Vol 12 (3) ◽  
pp. 919-938
Author(s):  
Mengyuan Mu ◽  
Martin G. De Kauwe ◽  
Anna M. Ukkola ◽  
Andy J. Pitman ◽  
Weidong Guo ◽  
...  

Abstract. The co-occurrence of droughts and heatwaves can have significant impacts on many socioeconomic and environmental systems. Groundwater has the potential to moderate the impact of droughts and heatwaves by moistening the soil and enabling vegetation to maintain higher evaporation, thereby cooling the canopy. We use the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model, coupled to a groundwater scheme, to examine how groundwater influences ecosystems under conditions of co-occurring droughts and heatwaves. We focus specifically on south-east Australia for the period 2000–2019, when two significant droughts and multiple extreme heatwave events occurred. We found groundwater plays an important role in helping vegetation maintain transpiration, particularly in the first 1–2 years of a multi-year drought. Groundwater impedes gravity-driven drainage and moistens the root zone via capillary rise. These mechanisms reduced forest canopy temperatures by up to 5 ∘C during individual heatwaves, particularly where the water table depth is shallow. The role of groundwater diminishes as the drought lengthens beyond 2 years and soil water reserves are depleted. Further, the lack of deep roots or stomatal closure caused by high vapour pressure deficit or high temperatures can reduce the additional transpiration induced by groundwater. The capacity of groundwater to moderate both water and heat stress on ecosystems during simultaneous droughts and heatwaves is not represented in most global climate models, suggesting that model projections may overestimate the risk of these events in the future.


Sign in / Sign up

Export Citation Format

Share Document