scholarly journals Stratospheric ozone trends for 1985–2018: sensitivity to recent large variability

2019 ◽  
Author(s):  
William T. Ball ◽  
Justin Alsing ◽  
Johannes Staehelin ◽  
Sean M. Davis ◽  
Lucien Froidevaux ◽  
...  

Abstract. The Montreal Protocol has successfully prevented catastrophic losses of stratospheric ozone, and signs of recovery are now evident. Nevertheless, recent work suggests that ozone in the lower stratosphere ( 95 %, 30° S–30° N) decreases dominate the quasi-global integrated decrease (99 % probability); the integrated tropical stratospheric column (1–100 hPa, 30° S–30° N) displays a significant overall decrease, with 95 % probability. These decreases do not reveal an inefficacy of the Montreal Protocol. Rather, they suggest other effects to be at work, mainly dynamical variability on long or short timescale, counteracting the protocol's regulation of halogenated ozone depleting substances (hODS). We demonstrate that large inter-annual mid-latitude variations (30° –60° ), such as the 2017 resurgence, are driven by non-linear QBO phase-dependent seasonal variability. However, this variability is not represented in current regression analyses. To understand if observed lower stratospheric decreases are a transient or long-term phenomenon, progress needs to be made in accounting for this dynamically-driven variability.

2019 ◽  
Vol 19 (19) ◽  
pp. 12731-12748 ◽  
Author(s):  
William T. Ball ◽  
Justin Alsing ◽  
Johannes Staehelin ◽  
Sean M. Davis ◽  
Lucien Froidevaux ◽  
...  

Abstract. The Montreal Protocol, and its subsequent amendments, has successfully prevented catastrophic losses of stratospheric ozone, and signs of recovery are now evident. Nevertheless, recent work has suggested that ozone in the lower stratosphere (< 24 km) continued to decline over the 1998–2016 period, offsetting recovery at higher altitudes and preventing a statistically significant increase in quasi-global (60∘ S–60∘ N) total column ozone. In 2017, a large lower stratospheric ozone resurgence over less than 12 months was estimated (using a chemistry transport model; CTM) to have offset the long-term decline in the quasi-global integrated lower stratospheric ozone column. Here, we extend the analysis of space-based ozone observations to December 2018 using the BASICSG ozone composite. We find that the observed 2017 resurgence was only around half that modelled by the CTM, was of comparable magnitude to other strong interannual changes in the past, and was restricted to Southern Hemisphere (SH) midlatitudes (60–30∘ S). In the SH midlatitude lower stratosphere, the data suggest that by the end of 2018 ozone is still likely lower than in 1998 (probability ∼80 %). In contrast, tropical and Northern Hemisphere (NH) ozone continue to display ongoing decreases, exceeding 90 % probability. Robust tropical (>95 %, 30∘ S–30∘ N) decreases dominate the quasi-global integrated decrease (99 % probability); the integrated tropical stratospheric column (1–100 hPa, 30∘ S–30∘ N) displays a significant overall ozone decrease, with 95 % probability. These decreases do not reveal an inefficacy of the Montreal Protocol; rather, they suggest that other effects are at work, mainly dynamical variability on long or short timescales, counteracting the positive effects of the Montreal Protocol on stratospheric ozone recovery. We demonstrate that large interannual midlatitude (30–60∘) variations, such as the 2017 resurgence, are driven by non-linear quasi-biennial oscillation (QBO) phase-dependent seasonal variability. However, this variability is not represented in current regression analyses. To understand if observed lower stratospheric ozone decreases are a transient or long-term phenomenon, progress needs to be made in accounting for this dynamically driven variability.


2019 ◽  
Vol 12 (4) ◽  
pp. 2423-2444
Author(s):  
Carlo Arosio ◽  
Alexei Rozanov ◽  
Elizaveta Malinina ◽  
Mark Weber ◽  
John P. Burrows

Abstract. This paper presents vertically and zonally resolved merged ozone time series from limb measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP). In addition, we present the merging of the latter two data sets with zonally averaged profiles from Stratospheric Aerosol and Gas Experiment (SAGE) II. The retrieval of ozone profiles from SCIAMACHY and OMPS-LP is performed using an inversion algorithm developed at the University of Bremen. To optimize the merging of these two time series, we use data from the Microwave Limb Sounder (MLS) as a transfer function and we follow two approaches: (1) a conventional method involving the calculation of deseasonalized anomalies and (2) a “plain-debiasing” approach, generally not considered in previous similar studies, which preserves the seasonal cycles of each instrument. We find a good correlation and no significant drifts between the merged and MLS time series. Using the merged data set from both approaches, we apply a multivariate regression analysis to study ozone changes in the 20–50 km range over the 2003–2018 period. Exploiting the dense horizontal sampling of the instruments, we investigate not only the zonally averaged field, but also the longitudinally resolved long-term ozone variations, finding an unexpected and large variability, especially at mid and high latitudes, with variations of up to 3 %–5 % per decade at altitudes around 40 km. Significant positive linear trends of about 2 %–4 % per decade were identified in the upper stratosphere between altitudes of 38 and 45 km at mid latitudes. This is in agreement with the predicted recovery of upper stratospheric ozone, which is attributed to both the adoption of measures to limit the release of halogen-containing ozone-depleting substances (Montreal Protocol) and the decrease in stratospheric temperature resulting from the increasing concentration of greenhouse gases. In the tropical stratosphere below 25 km negative but non-significant trends were found. We compare our results with previous studies and with short-term trends calculated over the SCIAMACHY period (2002–2012). While generally a good agreement is found, some discrepancies are seen in the tropical mid stratosphere. Regarding the merging of SAGE II with SCIAMACHY and OMPS-LP, zonal mean anomalies are taken into consideration and ozone trends before and after 1997 are calculated. Negative trends above 30 km are found for the 1985–1997 period, with a peak of −6 % per decade at mid latitudes, in agreement with previous studies. The increase in ozone concentration in the upper stratosphere is confirmed over the 1998–2018 period. Trends in the tropical stratosphere at 30–35 km show an interesting behavior: over the 1998–2018 period a negligible trend is found. However, between 2004 and 2011 a negative long-term change is detected followed by a positive change between 2012 and 2018. We attribute this behavior to dynamical changes in the tropical middle stratosphere.


2018 ◽  
Vol 18 (2) ◽  
pp. 1379-1394 ◽  
Author(s):  
William T. Ball ◽  
Justin Alsing ◽  
Daniel J. Mortlock ◽  
Johannes Staehelin ◽  
Joanna D. Haigh ◽  
...  

Abstract. Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer–Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60–90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.


2020 ◽  
Vol 13 (1) ◽  
pp. 109
Author(s):  
Leonie Bernet ◽  
Ian Boyd ◽  
Gerald Nedoluha ◽  
Richard Querel ◽  
Daan Swart ◽  
...  

Changes in stratospheric ozone have to be assessed continuously to evaluate the effectiveness of the Montreal Protocol. In the southern hemisphere, few ground-based observational datasets exist, making measurements at the Network for the Detection of Atmospheric Composition Change (NDACC) station at Lauder, New Zealand invaluable. Investigating these datasets in detail is essential to derive realistic ozone trends. We compared lidar data and microwave radiometer data with collocated Aura Microwave Limb sounder (MLS) satellite data and ERA5 reanalysis data. The detailed comparison makes it possible to assess inhomogeneities in the data. We find good agreement between the datasets but also some possible biases, especially in the ERA5 data. The data uncertainties and the inhomogeneities were then considered when deriving trends. Using two regression models from the Long-term Ozone Trends and Uncertainties in the Stratosphere (LOTUS) project and from the Karlsruhe Institute of Technology (KIT), we estimated resulting ozone trends. Further, we assessed how trends are affected by data uncertainties and inhomogeneities. We find positive ozone trends throughout the stratosphere between 0% and 5% per decade and show that considering data uncertainties and inhomogeneities in the regression affects the resulting trends.


2020 ◽  
Author(s):  
Daniel Kunkel ◽  
Franziska Weyland ◽  
William Ball ◽  
Peter Hoor

&lt;p lang=&quot;en-US&quot;&gt;&lt;span&gt;Although a general recovery of stratospheric ozone is expected after the successful implementation of the Montreal Protocol, strong indications for a decline in lower stratospheric ozone in the extratropics are still evident. Related studies attribute this decline to internal dynamic variability affecting the UTLS, in particular associated to the QBO and the exchange of air masses between tropical and extratropical regions. The dynamics affect the transport of ozone from the source region in the tropics into the extratropical lower stratosphere. More so, dynamics affect the structure of the lower stratosphere. In particular, the locations of the tropopause and of isentropic surfaces in the lower stratosphere, i.e., the region up to ~25 km altitude, affect the vertical profile of ozone and as such the integrated column ozone in the lower stratosphere. &lt;br /&gt;This study aims to address the relation between the changing altitude of the tropopause and isentropic surfaces in the lower stratosphere and the declining ozone in the extratropical UTLS. For this we use reanalysis data from ECMWF and dynamic linear modeling to study trends of the dynamic tropopause and of the thermodynamical structure and the potential consequences of these trends for lower stratospheric ozone. In particular, we ask the question: do ozone trends still show a decline if we use a dynamic instead of a fixed coordinate system to calculate these trends?&lt;/span&gt;&lt;/p&gt;


2008 ◽  
Vol 26 (5) ◽  
pp. 1207-1220 ◽  
Author(s):  
N. R. P. Harris ◽  
E. Kyrö ◽  
J. Staehelin ◽  
D. Brunner ◽  
S.-B. Andersen ◽  
...  

Abstract. The EU CANDIDOZ project investigated the chemical and dynamical influences on decadal ozone trends focusing on the Northern Hemisphere. High quality long-term ozone data sets, satellite-based as well as ground-based, and the long-term meteorological reanalyses from ECMWF and NCEP are used together with advanced multiple regression models and atmospheric models to assess the relative roles of chemistry and transport in stratospheric ozone changes. This overall synthesis of the individual analyses in CANDIDOZ shows clearly one common feature in the NH mid latitudes and in the Arctic: an almost monotonic negative trend from the late 1970s to the mid 1990s followed by an increase. In most trend studies, the Equivalent Effective Stratospheric Chlorine (EESC) which peaked in 1997 as a consequence of the Montreal Protocol was observed to describe ozone loss better than a simple linear trend. Furthermore, all individual analyses point to changes in dynamical drivers, such as the residual circulation (responsible for the meridional transport of ozone into middle and high latitudes) playing a key role in the observed turnaround. The changes in ozone transport are associated with variations in polar chemical ozone loss via heterogeneous ozone chemistry on PSCs (polar stratospheric clouds). Synoptic scale processes as represented by the new equivalent latitude proxy, by conventional tropopause altitude or by 250 hPa geopotential height have also been successfully linked to the recent ozone increases in the lowermost stratosphere. These show significant regional variation with a large impact over Europe and seem to be linked to changes in tropospheric climate patterns such as the North Atlantic Oscillation. Some influence in recent ozone increases was also attributed to the rise in solar cycle number 23. Changes from the late 1970s to the mid 1990s were found in a number of characteristics of the Arctic vortex. However, only one trend was found when more recent years are also considered, namely the tendency for cold winters to become colder.


2018 ◽  
Author(s):  
Leonie Bernet ◽  
Thomas von Clarmann ◽  
Sophie Godin-Beekmann ◽  
Gérard Ancellet ◽  
Eliane Maillard Barras ◽  
...  

Abstract. Observing stratospheric ozone is essential to assess if the Montreal Protocol has succeeded to save the ozone layer by banning ozone depleting substances. Recent studies have reported positive trends indicating that ozone is recovering in the upper stratosphere at mid-latitudes, but the trend magnitudes differ and uncertainties are still high. Trends and their uncertainties are influenced by factors such as instrumental drifts, sampling patterns, discontinuities, biases, or short-term anomalies that all might mask a potential ozone recovery. The present study investigates how anomalies, temporal measurement sampling rates and trend period lengths influence resulting trends. We present an approach for handling suspicious anomalies in trend estimations to improve the derived trend profiles. The approach was applied to data from a Ground-based Millimetre-wave Ozone Spectrometer (GROMOS) located in Bern, Switzerland. We compare our improved GROMOS trend estimate with results from other ground stations (lidars, ozonesondes, and microwave radiometers) in Central Europe. The data indicate positive trends of 1 to 3 % per decade at an altitude of about 40 km (3 hPa), providing a confirmation of ozone recovery in the upper stratosphere in agreement to satellite observations. At lower altitudes, the ground station data show inconsistent trend results, which emphasize the importance of ongoing research on lower stratospheric ozone trends. Our presented method of a combined analysis of ground station data provides a useful approach to recognize and to reduce uncertainties in stratospheric ozone trends by considering anomalies in the trend estimation. We conclude that stratospheric trend estimations still need improvement and that our approach provides a tool that can also be useful for other data sets.


2017 ◽  
Author(s):  
William T. Ball ◽  
Justin Alsing ◽  
Daniel J. Mortlock ◽  
Johannes Staehelin ◽  
Joanna D. Haigh ◽  
...  

Abstract. Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol (MP), and since 1998 ozone in the upper stratosphere shows a likely recovery. Total column ozone (TCO) measurements of ozone between the Earth's surface and the top of the atmosphere, indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes outside the polar regions (60–90). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has declined continuously since 1985. We find that, even though upper stratospheric ozone is recovering in response to the MP, the lower stratospheric changes more than compensate for this, resulting in the conclusion that, globally (60°&amp;tinsp;S–60° N), stratospheric column ozone (StCO) continues to deplete. We find that globally, TCO appears to not have decreased because tropospheric column ozone (TrCO) increases, likely the result of human activity and harmful to respiratory health, are compensating for the stratospheric decreases. The reason for the continued reduction of lower stratospheric ozone is not clear, models do not reproduce these trends, and so the causes now urgently need to be established. Reductions in lower stratospheric ozone trends may partly lead to a small reduction in the warming of the climate, but a reduced ozone layer may also permit an increase in harmful ultra-violet (UV) radiation at the surface and would impact human and ecosystem health.


2020 ◽  
Author(s):  
William Ball ◽  
Gabriel Chiodo ◽  
Marta Abalos ◽  
Justin Alsing

&lt;p&gt;The ozone layer was damaged last century due to the emissions of long-lived ozone depleting substances (ODSs). Following the Montreal Protocol that banned ODSs, a reduction in total column ozone (TCO) ceased in the late 1990s. Today, ozone above 32&amp;#8201;km displays a clear recovery. Nevertheless, a clear detection of TCO recovery in observations remains elusive, and there is mounting evidence of decreasing ozone in the lower stratosphere (below 24 km) in the tropics out to the mid-latitudes (30-60&amp;#176;). Chemistry climate models (CCMs) predict that lower stratospheric ozone will decrease in the tropics by 2100, but not at mid-latitudes.&lt;br&gt;&amp;#160;&lt;br&gt;Here, we compare the CCMVal-2 models, which informed the WMO 2014 ozone assessment and show similar tendencies to more recent CCMI data, with observations over 1998-2016. We find that over this period, modelled ozone declines in the tropics are similar to those seen in observations and are likely driven by increased tropical upwelling. Conversely, CCMs generally show ozone increases in the mid-latitude lower stratosphere where observations show a negative tendency. We provide evidence from JRA-55 and ERA-Interim reanalyses indicating that mid-latitude trends are due to enhanced mixing between the tropics and extratropics, in agreement with other studies.&amp;#160;&lt;/p&gt;&lt;p&gt;Additional analysis of temperature and water vapour further supports our findings. Overall, our results suggest that expected changes in large scale circulation from increasing greenhouse gases may now already be underway. While model projections suggest extra-tropical ozone should recover by 2100, our study raises questions about their ability to simulate lower stratospheric changes in this region.&lt;/p&gt;


2017 ◽  
Vol 17 (20) ◽  
pp. 12269-12302 ◽  
Author(s):  
William T. Ball ◽  
Justin Alsing ◽  
Daniel J. Mortlock ◽  
Eugene V. Rozanov ◽  
Fiona Tummon ◽  
...  

Abstract. Observations of stratospheric ozone from multiple instruments now span three decades; combining these into composite datasets allows long-term ozone trends to be estimated. Recently, several ozone composites have been published, but trends disagree by latitude and altitude, even between composites built upon the same instrument data. We confirm that the main causes of differences in decadal trend estimates lie in (i) steps in the composite time series when the instrument source data changes and (ii) artificial sub-decadal trends in the underlying instrument data. These artefacts introduce features that can alias with regressors in multiple linear regression (MLR) analysis; both can lead to inaccurate trend estimates. Here, we aim to remove these artefacts using Bayesian methods to infer the underlying ozone time series from a set of composites by building a joint-likelihood function using a Gaussian-mixture density to model outliers introduced by data artefacts, together with a data-driven prior on ozone variability that incorporates knowledge of problems during instrument operation. We apply this Bayesian self-calibration approach to stratospheric ozone in 10° bands from 60° S to 60° N and from 46 to 1 hPa (∼ 21–48 km) for 1985–2012. There are two main outcomes: (i) we independently identify and confirm many of the data problems previously identified, but which remain unaccounted for in existing composites; (ii) we construct an ozone composite, with uncertainties, that is free from most of these problems – we call this the BAyeSian Integrated and Consolidated (BASIC) composite. To analyse the new BASIC composite, we use dynamical linear modelling (DLM), which provides a more robust estimate of long-term changes through Bayesian inference than MLR. BASIC and DLM, together, provide a step forward in improving estimates of decadal trends. Our results indicate a significant recovery of ozone since 1998 in the upper stratosphere, of both northern and southern midlatitudes, in all four composites analysed, and particularly in the BASIC composite. The BASIC results also show no hemispheric difference in the recovery at midlatitudes, in contrast to an apparent feature that is present, but not consistent, in the four composites. Our overall conclusion is that it is possible to effectively combine different ozone composites and account for artefacts and drifts, and that this leads to a clear and significant result that upper stratospheric ozone levels have increased since 1998, following an earlier decline.


Sign in / Sign up

Export Citation Format

Share Document