scholarly journals Linkage among Ice Crystal Microphysics, Mesoscale Dynamics and Cloud and Precipitation Structures Revealed by Collocated Microwave Radiometer and Multi-frequency Radar Observations

2020 ◽  
Author(s):  
Jie Gong ◽  
Xiping Zeng ◽  
Dong L. Wu ◽  
S. Joseph Munchak ◽  
Xiaowen Li ◽  
...  

Abstract. Ice clouds and falling snow are ubiquitous globally and play important roles in the Earth's radiation budget and precipitation processes. Ice particle microphysical properties (e.g., size, habit and orientation) are not only influenced by ambient environment's dynamic and thermodynamic conditions, but also intimately connect to the cloud radiative effects and particle fall speeds, which therefore impact up to the future climate projection and down to the details of the surface precipitation (e.g., onset-time, location, type and strength). Our previous work revealed that high-frequency Polarimetric radiance Difference (PD) from passive microwave sensors is a good indicator of the bulk aspect ratio of horizontally oriented ice particles that are often occur inside anvil clouds and/or stratiform precipitations. In this current work, we further investigate the dynamic/thermodynamic mechanisms and cloud/precipitation structures associated with ice-phase microphysics corresponding to different PD signals. In order to do so, collocated CloudSat radar (W-band) and Global Precipitation Measurement Dual-frequency Precipitation Radar (GPM-DPR, Ku/Ka bands) observations as well as European Centre for Medium-Range Weather Forecasts (ECMWF) atmosphere background profiles are grouped according to the magnitude of PD for only stratiform precipitation and/or anvil cloud scenes. We found that horizontally-oriented snow aggregates or large snow particles are likely the major contributor to the high-PD signals at 166 GHz, while low-PD magnitudes can be attributed to small cloud ice, randomly oriented snow aggregates, riming snow or super-cooled water. Further, high (low) PD scenes are found to be associated with stronger (weaker) wind shear and higher (lower) ambient humidity, both of which help promote (prohibit) the growth of frozen particles and the organization of convective systems. An ensemble of squall line cases is studied at the end to demonstrate that the PD asymmetry in the leading and trailing edges of the deep convection line is closely tied to the anvil cloud and stratiform precipitation layers respectively, suggesting the potential usefulness of PD as a proxy of stratiform/convective precipitation flag, as well as a proxy of convection life stage.

2020 ◽  
Vol 20 (21) ◽  
pp. 12633-12653
Author(s):  
Jie Gong ◽  
Xiping Zeng ◽  
Dong L. Wu ◽  
S. Joseph Munchak ◽  
Xiaowen Li ◽  
...  

Abstract. Ice clouds and falling snow are ubiquitous globally and play important roles in the Earth's radiation budget and precipitation processes. Ice particle microphysical properties (e.g., size, habit and orientation) are not only influenced by the ambient environment's dynamic and thermodynamic conditions, but are also intimately connected to the cloud radiative effects and particle fall speeds, which therefore have an impact on future climate projection as well as on the details of the surface precipitation (e.g., onset time, location, type and strength). Our previous work revealed that high-frequency (> 150 GHz) polarimetric radiance difference (PD) from passive microwave sensors is a good indicator of the bulk aspect ratio of horizontally oriented ice particles that often occur inside anvil clouds and/or stratiform precipitation. In this current work, we further investigate the dynamic and thermodynamic mechanisms and cloud–precipitation structures associated with ice-phase microphysics corresponding to different PD signals. In order to do so, collocated CloudSat radar (W-band) and Global Precipitation Measurement Dual-frequency Precipitation Radar (GPM DPR, Ku–Ka-bands) observations as well as European Centre for Medium-Range Weather Forecasts (ECMWF) atmosphere background profiles are grouped according to the magnitude of PD for only stratiform precipitation and/or anvil cloud scenes. We found that horizontally oriented snow aggregates or large snow particles are likely the major contributor to the high-PD signals at 166 GHz, while low-PD magnitudes can be attributed to small cloud ice, randomly oriented snow aggregates, riming snow or supercooled water. Further, high-PD (low-PD) scenes are found to be associated with stronger (weaker) wind shear and higher (lower) ambient humidity, both of which help promote (prohibit) the growth of frozen particles and the organization of convective systems. An ensemble of squall line cases is studied at the end to demonstrate that the PD asymmetry in the leading and trailing edges of the deep convection line is closely tied to the anvil cloud and stratiform precipitation layers, respectively, suggesting the potential usefulness of PD as a proxy of stratiform–convective precipitation flag, as well as a proxy of convection life stage.


2013 ◽  
Vol 141 (8) ◽  
pp. 2841-2849 ◽  
Author(s):  
Kwinten Van Weverberg

Abstract Despite a number of studies dedicated to the sensitivity of deep convection simulations to the properties of the rimed ice species in microphysics schemes, no consensus has been achieved on the nature of the impact. Considering the need for improved quantitative precipitation forecasts, it is crucial that the cloud modeling community better understands the reasons for these differing conclusions and knows the relevance of these sensitivities for the numerical weather prediction. This study examines the role of environmental conditions and storm type on the sensitivity of precipitation simulations to the nature of the rimed ice species (graupel or hail). Idealized 3D simulations of supercells/multicells and squall lines have been performed in varying thermodynamic environments. It has been shown that for simulation periods of sufficient length (>2 h), graupel-containing and hail-containing storms produce domain-averaged surface precipitation that is more similar than many earlier studies suggest. While graupel is lofted to higher altitudes and has a longer residence time aloft than hail, these simulations suggest that most of this graupel eventually reaches the surface and the surface precipitation rates of hail- and graupel-containing storms converge. However, environmental conditions play an important role in the magnitude of this sensitivity. Storms in large-CAPE environments (typical of storms in the U.S. Midwest) are more sensitive than their low-CAPE counterparts (typical of storms in Europe) to the nature of the rimed ice species in terms of domain-average surface precipitation. Supercells/multicells are more sensitive than squall lines to the nature of the rimed ice species in terms of spatial precipitation distribution and peak precipitation, disregarding of the amount of CAPE.


2012 ◽  
Vol 140 (6) ◽  
pp. 1883-1907 ◽  
Author(s):  
Kwinten Van Weverberg ◽  
Andrew M. Vogelmann ◽  
Hugh Morrison ◽  
Jason A. Milbrandt

Abstract This paper investigates the level of complexity that is needed within bulk microphysics schemes to represent the essential features associated with deep convection. To do so, the sensitivity of surface precipitation is evaluated in two-dimensional idealized squall-line simulations with respect to the level of complexity in the bulk microphysics schemes of H. Morrison et al. and of J. A. Milbrandt and M. K. Yau. Factors examined include the number of predicted moments for each of the precipitating hydrometeors, the number and nature of ice categories, and the conversion term formulations. First, it is shown that simulations of surface precipitation and cold pools are not only a two-moment representation of rain, as suggested by previous research, but also by two-moment representations for all precipitating hydrometeors. Cold pools weakened when both rain and graupel number concentrations were predicted, because size sorting led to larger graupel particles that melted into larger raindrops and caused less evaporative cooling. Second, surface precipitation was found to be less sensitive to the nature of the rimed ice species (hail or graupel). Production of hail in experiments including both graupel and hail strongly depends on an unphysical threshold that converts small hail back to graupel, indicating the need for a more physical treatment of the graupel-to-hail conversion. Third, it was shown that the differences in precipitation extremes between the two-moment microphysics schemes are mainly related to the treatment of drop breakup. It was also shown that, although the H. Morrison et al. scheme is dominated by deposition growth and low precipitation efficiency, the J. A. Milbrandt and M. K. Yau scheme is dominated by riming processes and high precipitation efficiency.


2016 ◽  
Vol 33 (4) ◽  
pp. 653-667 ◽  
Author(s):  
Atsushi Hamada ◽  
Yukari N. Takayabu

AbstractThis paper demonstrates the impact of the enhancement in detectability by the dual-frequency precipitation radar (DPR) on board the Global Precipitation Measurement (GPM) core observatory. By setting two minimum detectable reflectivities—12 and 18 dBZ—artificially to 6 months of GPM DPR measurements, the precipitation occurrence and volume increase by ~21.1% and ~1.9%, respectively, between 40°S and 40°N.GPM DPR is found to be able to detect light precipitation, which mainly consists of two distinct types. One type is shallow precipitation, which is most significant for convective precipitation over eastern parts of subtropical oceans, where deep convection is typically suppressed. The other type is probably associated with lower parts of anvil clouds associated with organized precipitation systems.While these echoes have lower reflectivities than the official value of the minimum detectable reflectivity, they are found to mostly consist of true precipitation signals, suggesting that the official value may be too conservative for some sort of meteorological analyses. These results are expected to further the understanding of both global energy and water budgets and the diabatic heating distribution.


2014 ◽  
Vol 15 (6) ◽  
pp. 2157-2175 ◽  
Author(s):  
Chuntao Liu ◽  
Edward Zipser

Abstract With 15 yr of the Tropical Rainfall Measuring Mission (TRMM) observations, the passive microwave radiometers [TRMM Microwave Imager (TMI)] and the precipitation radar (PR) report a close geographical distribution of annual precipitation between 36°S and 36°N. However, large discrepancies between PR and TMI precipitation retrievals are also found over several specific regions, such as central Africa, the Amazon, the tropical east Pacific, and north Indian Ocean. To understand these discrepancies, the PR near-surface and the TMI surface precipitation retrievals are compared at both pixel and precipitation system levels using collocated pixels and a precipitation feature database from 1998 to 2012. Over land, the TMI overestimates precipitation in deep and intense convective systems, but misses significant amounts of warm rainfall in shallow systems. Over the ocean, because of the partial beam filling of large footprints of the lower-frequency sensors, the TMI reports a larger precipitation area than the PR and underestimates the precipitation rate in the convective precipitation region. The TMI tends to overestimate precipitation compared to the PR in a large proportion of shallow systems over the tropical east Pacific and trade wind regions with large-scale descent. The PR tends to overestimate precipitation compared to the TMI in a large proportion of shallow systems over rainy oceans, such as the west Pacific and the Atlantic ITCZ. All these findings imply that there are still large uncertainties in the precipitation climatology over some regions. Further ground validation campaigns are still needed, especially over the ocean.


2007 ◽  
Vol 135 (8) ◽  
pp. 2879-2896 ◽  
Author(s):  
Jean-François Mahfouf ◽  
Bernard Bilodeau

Abstract The adjoint version of the Global Environmental Multiscale model including a comprehensive package of simplified and linearized physical processes (large-scale condensation, deep moist convection, vertical diffusion, and subgrid-scale orographic effects) is used to evaluate the sensitivity of surface precipitation to initial conditions for up to 24 h for two meteorological systems: a midlatitude front and a tropical cyclone. Such diagnostics are useful to improve the understanding on variational assimilation of precipitation data. In agreement with a similar study, the largest sensitivity is found with respect to the temperature field for both stratiform and convective precipitation. Close to the observation time and for stratiform precipitation, the sensitivity with respect to specific humidity is rather large, which corroborates conclusions from previous one-dimensional variational data assimilation experimentations. The sensitivity is then reduced significantly after the observation time. The sensitivities of surface precipitation to the wind components and to specific humidity are comparable and are at a maximum at the observation time. The sensitivity to the surface pressure is always much smaller than the sensitivity to the other variables. In general, sensitivities are largest at the observation time and then decrease. However, for the midlatitude perturbation, the sensitivity is enhanced after 12 h for stratiform precipitation and also for convective precipitation using a scheme based on the moisture convergence closure. This results from a dynamical coupling upstream of the area of interest through baroclinic instability as evidenced by vertically backward-tilted sensitivities. Such enhancement is not observed for the tropical case. The tangent-linear approximation remains acceptable for accumulated precipitation up to 24 h but is rather poor for instantaneous rain rates. The variational assimilation of accumulated precipitation should thus be favored.


Abstract The error characterization of rainfall products of spaceborne radar is essential for better applications of radar data, such as multi-source precipitation data fusion and hydrological modeling. In this study, we analyzed the error of the near-surface rainfall product of the dual-frequency precipitation radar (DPR) on the Global Precipitation Measurement Mission (GPM) and modeled it based on ground C-band dual-polarization radar (CDP) data with optimization rainfall retrieval. The comparison results show that the near-surface rainfall data were overestimated by light rain and slightly underestimated by heavy rain. The error of near-surface rainfall of the DPR was modeled as an additive model according to the comparison results. The systematic error of near-surface rainfall was in the form of a quadratic polynomial, while the systematic error of stratiform precipitation was smaller than that of convective precipitation. The random error was modeled as a Gaussian distribution centered at −1−0 mm h−1. The standard deviation of the Gaussian distribution of convective precipitation was 1.71 mm h−1 and the standard deviation of stratiform precipitation was 1.18 mm h−1, which is smaller than that of convective precipitation. In view of the precipitation retrieval algorithm of DPR, the error causes were analyzed from the reflectivity factor (Z) and the drop size distribution (DSD) parameters (Dm, Nw). The high accuracy of the reflectivity factor measurement results in a small systematic error. Importantly, the negative bias of Nw was very obvious when the rain type was convective precipitation, resulting in a large random error.


2017 ◽  
Vol 56 (8) ◽  
pp. 2259-2274 ◽  
Author(s):  
Lingzhi Zhong ◽  
Rongfang Yang ◽  
Lin Chen ◽  
Yixin Wen ◽  
Ruiyi Li ◽  
...  

AbstractThis study presents a statistical analysis of the variability of the vertical structure of precipitation in the eastern downstream region of the Tibetan Plateau as measured by the Precipitation Radar (PR) on the National Aeronautics and Space Administration Tropical Rainfall Measuring Mission (TRMM) satellite. Data were analyzed over an 11-yr time span (January 2004–December 2014). The results show the seasonal and spatial variability of the storm height, freezing level, and bright band for different types of precipitation as well as the characteristics of intensity-related and type-related vertical profiles of reflectivity (VPR). Major findings were as follows: About 90% of the brightband peak reflectivity of stratiform precipitation was less than 32 dBZ, and 40% of the maximum reflectivity of convective precipitation exceeded 35 dBZ. The intensity of surface rainfall rates also depended on the shapes of VPRs. For stratiform precipitation, ice–snow aggregation was faster during moderate and heavy rainfall than it was in light rainfall. Since both the moisture and temperature are lower in winter, the transformation efficiency of hydrometeors becomes slower. Typical Ku-band representative climatological VPRs (CPRs) for stratiform precipitation have been created on the basis of the integration of normalized VPR shape for the given area and the rainfall intensity. All of the findings indicate that the developed CPRs can be used to improve surface precipitation estimates in regions with complex terrain where the ground-based radar net has limited visibility at low levels.


2019 ◽  
Vol 76 (10) ◽  
pp. 3267-3283 ◽  
Author(s):  
Cheng-Ku Yu ◽  
Che-Yu Lin ◽  
Jhang-Shuo Luo

Abstract This study used radar and surface observations to track a long-lasting outer tropical cyclone rainband (TCR) of Typhoon Jangmi (2008) over a considerable period of time (~10 h) from its formative to mature stage. Detailed analyses of these unique observations indicate that the TCR was initiated on the eastern side of the typhoon at a radial distance of ~190 km as it detached from the upwind segment of a stratiform rainband located close to the inner-core boundary. The outer rainband, as it propagated cyclonically outward, underwent a prominent convective transformation from generally stratiform precipitation during the earlier period to highly organized, convective precipitation during its mature stage. The transformation was accompanied by a clear trend of surface kinematics and thermodynamics toward squall-line-like features. The observed intensification of the rainband was not simply related to the spatial variation of the ambient CAPE or potential instability; instead, the dynamical interaction between the prerainband vertical shear and cold pools, with progression toward increasingly optimal conditions over time, provides a reasonable explanation for the temporal alternation of the precipitation intensity. The increasing intensity of cold pools was suggested to play an essential role in the convective transformation for the rainband. The propagation characteristics of the studied TCR were distinctly different from those of wave disturbances frequently documented within the cores of tropical cyclones; however, they were consistent with the theoretically predicted propagation of convectively generated cold pools. The convective transformation, as documented in the present case, is anticipated to be one of the fundamental processes determining the evolving and structural nature of outer TCRs.


2014 ◽  
Vol 71 (11) ◽  
pp. 3902-3930 ◽  
Author(s):  
Sungsu Park

Abstract The author develops a unified convection scheme (UNICON) that parameterizes relative (i.e., with respect to the grid-mean vertical flow) subgrid vertical transport by nonlocal asymmetric turbulent eddies. UNICON is a process-based model of subgrid convective plumes and mesoscale organized flow without relying on any quasi-equilibrium assumptions such as convective available potential energy (CAPE) or convective inhibition (CIN) closures. In combination with a relative subgrid vertical transport scheme by local symmetric turbulent eddies and a grid-scale advection scheme, UNICON simulates vertical transport of water species and conservative scalars without double counting at any horizontal resolution. UNICON simulates all dry–moist, forced–free, and shallow–deep convection within a single framework in a seamless, consistent, and unified way. It diagnoses the vertical profiles of the macrophysics (fractional area, plume radius, and number density) as well as the microphysics (production and evaporation rates of convective precipitation) and the dynamics (mass flux and vertical velocity) of multiple convective updraft and downdraft plumes. UNICON also prognoses subgrid cold pool and mesoscale organized flow within the planetary boundary layer (PBL) that is forced by evaporation of convective precipitation and accompanying convective downdrafts but damped by surface flux and entrainment at the PBL top. The combined subgrid parameterization of diagnostic convective updraft and downdraft plumes, prognostic subgrid mesoscale organized flow, and the feedback among them remedies the weakness of conventional quasi-steady diagnostic plume models—the lack of plume memory across the time step—allowing UNICON to successfully simulate various transitional phenomena associated with convection (e.g., the diurnal cycle of precipitation and the Madden–Julian oscillation).


Sign in / Sign up

Export Citation Format

Share Document