scholarly journals Combined Space and Ground Radars for Improving Quantitative Precipitation Estimations in the Eastern Downstream Region of the Tibetan Plateau. Part I: Variability in the Vertical Structure of Precipitation in ChuanYu Analyzed from Long-Term Spaceborne Observations by TRMM PR

2017 ◽  
Vol 56 (8) ◽  
pp. 2259-2274 ◽  
Author(s):  
Lingzhi Zhong ◽  
Rongfang Yang ◽  
Lin Chen ◽  
Yixin Wen ◽  
Ruiyi Li ◽  
...  

AbstractThis study presents a statistical analysis of the variability of the vertical structure of precipitation in the eastern downstream region of the Tibetan Plateau as measured by the Precipitation Radar (PR) on the National Aeronautics and Space Administration Tropical Rainfall Measuring Mission (TRMM) satellite. Data were analyzed over an 11-yr time span (January 2004–December 2014). The results show the seasonal and spatial variability of the storm height, freezing level, and bright band for different types of precipitation as well as the characteristics of intensity-related and type-related vertical profiles of reflectivity (VPR). Major findings were as follows: About 90% of the brightband peak reflectivity of stratiform precipitation was less than 32 dBZ, and 40% of the maximum reflectivity of convective precipitation exceeded 35 dBZ. The intensity of surface rainfall rates also depended on the shapes of VPRs. For stratiform precipitation, ice–snow aggregation was faster during moderate and heavy rainfall than it was in light rainfall. Since both the moisture and temperature are lower in winter, the transformation efficiency of hydrometeors becomes slower. Typical Ku-band representative climatological VPRs (CPRs) for stratiform precipitation have been created on the basis of the integration of normalized VPR shape for the given area and the rainfall intensity. All of the findings indicate that the developed CPRs can be used to improve surface precipitation estimates in regions with complex terrain where the ground-based radar net has limited visibility at low levels.

2021 ◽  
Vol 13 (21) ◽  
pp. 4491
Author(s):  
Lizandro Pereira de Abreu ◽  
Weber Andrade Gonçalves ◽  
Enrique Vieira Mattos ◽  
Pedro Rodrigues Mutti ◽  
Daniele Torres Rodrigues ◽  
...  

The Northeast region of Brazil (NEB) has a high rate of deaths from lightning strikes (18% of the country’s total). The region has states, such as Piauí, with high mortality rates (1.8 deaths per million), much higher than the national rate (0.8) and the NEB rate (0.5). In this sense, the present work analyzes the microphysical characteristics of clouds with and without the occurrence of total lightning. For this purpose, data from the Lightning Imaging Sensor (LIS), TRMM Microwave Imager (TMI) and Precipitation Radar (PR), aboard the Tropical Rainfall Measuring Mission (TRMM) satellite from 1998 to 2013 were used. The TRMM data were analyzed to establish a relationship between the occurrence of lightning and the clouds’ microphysical characteristics, comparing them as a function of lightning occurrence classes, spatial location and atmospheric profiles. A higher lightning occurrence is associated with higher values of ice water path (>38.9 kg m−2), rain water path (>2 kg m−2), convective precipitation (>5 mm h−1) and surface precipitation (>7 mm h−1), in addition to slightly higher freezing level height values. Reflectivity observations (>36 dBZ) demonstrated typical convective profile curves, with higher values associated with classes with higher lightning densities (class with more than 6.8 flash km−2 year−1).


2013 ◽  
Vol 52 (2) ◽  
pp. 408-424 ◽  
Author(s):  
Qing Cao ◽  
Yang Hong ◽  
Jonathan J. Gourley ◽  
Youcun Qi ◽  
Jian Zhang ◽  
...  

AbstractThis study presents a statistical analysis of the vertical structure of precipitation measured by NASA–Japan Aerospace Exploration Agency’s (JAXA) Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) in the region of southern California, Arizona, and western New Mexico, where the ground-based Next-Generation Radar (NEXRAD) network finds difficulties in accurately measuring surface precipitation because of beam blockages by complex terrain. This study has applied TRMM PR version-7 products 2A23 and 2A25 from 1 January 2000 to 26 October 2011. The seasonal, spatial, intensity-related, and type-related variabilities are characterized for the PR vertical profile of reflectivity (VPR) as well as the heights of storm, freezing level, and bright band. The intensification and weakening of reflectivity at low levels in the VPR are studied through fitting physically based VPR slopes. Major findings include the following: precipitation type is the most significant factor determining the characteristics of VPRs, the shape of VPRs also influences the intensity of surface rainfall rates, the characteristics of VPRs have a seasonal dependence with strong similarities between the spring and autumn months, and the spatial variation of VPR characteristics suggests that the underlying terrain has an impact on the vertical structure. The comprehensive statistical and physical analysis strengthens the understanding of the vertical structure of precipitation and advocates for the approach of VPR correction to improve surface precipitation estimation in complex terrain.


2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Kunyu Teng ◽  
Hongke Cai ◽  
Xiubin Sun ◽  
Quanliang Chen

This paper examines the basic geometric and physical characteristics of precipitation clouds over the Tibetan Plateau, based on the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data from 1998 to 2015, using the minimum bounding rectangle (MBR) method. The results show that about 60% of the precipitation clouds occur with a scale of approximately 18 km (length) and 15 km (width), and the proportion of precipitation clouds with a length longer than 100 km and a width wider than 90 km is less than 1%. Most of the precipitation cloud exhibits a shape between square and long strips in the horizontal direction and lanky in the vertical direction. The average rainfall intensity of precipitation clouds is between 0.5 and 6 mm h−1. The average length and width of precipitation clouds show a logarithmic, linear relationship. The distribution of raindrops in precipitation clouds is relatively compact. With the expansion of the area, the precipitation clouds gradually become squatty. The relationship between physical and geometric parameters of precipitation clouds shows that with the precipitation cloud area expanding, the average rainfall rate of precipitation clouds also increases. Heavy convective rainfall is more likely to occur in larger precipitation clouds. For the precipitation clouds of the same size, the area fraction and contribution of convective precipitation are lower than that of stratiform precipitation.


2007 ◽  
Vol 46 (5) ◽  
pp. 667-672 ◽  
Author(s):  
Yunfei Fu ◽  
Guosheng Liu

Abstract Rain-type statistics derived from Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) standard product show that some 70% of raining pixels in the central Tibetan Plateau summer are stratiform—a clear contradiction to the common knowledge that rain events during summer in this region are mostly convective, as a result of the strong atmospheric convective instability resulting from surface heating. In examining the vertical distribution of the stratiform rain-rate profiles, it is suspected that the TRMM PR algorithm misidentifies weak convective rain events as stratiform rain events. The possible cause for this misidentification is believed to be that the freezing level is close to the surface over the plateau, so that the ground echo may be mistakenly identified as the melting level in the PR rain classification algorithm.


2020 ◽  
Vol 55 (9-10) ◽  
pp. 2921-2937
Author(s):  
Yanhong Gao ◽  
Fei Chen ◽  
Gonzalo Miguez-Macho ◽  
Xia Li

Abstract The precipitation recycling (PR) ratio is an important indicator that quantifies the land-atmosphere interaction strength in the Earth system’s water cycle. To better understand how the heterogeneous land surface in the Tibetan Plateau (TP) contributes to precipitation, we used the water-vapor tracer (WVT) method coupled with the Weather Research and Forecasting (WRF) regional climate model. The goals were to quantify the PR ratio, in terms of annual mean, seasonal variability and diurnal cycle, and to address the relationships of the PR ratio with lake treatments and precipitation amount. Simulations showed that the PR ratio increases from 0.1 in winter to 0.4 in summer when averaged over the TP with the maxima centered at the headwaters of three major rivers (Yangtze, Yellow and Mekong). For the central TP, the highest PR ratio rose to over 0.8 in August, indicating that most of the precipitation was recycled via local evapotranspiration in summer. The larger daily mean and standard deviation of the PR ratio in summer suggested a stronger effect of land-atmosphere interactions on precipitation in summer than in winter. Despite the relatively small spatial extent of inland lakes, the treatment of lakes in WRF significantly impacted the calculation of the PR ratio over the TP, and correcting lake temperature substantially improved both precipitation and PR ratio simulations. There was no clear relationship between PR ratio and precipitation amount; however, a significant positive correlation between PR and convective precipitation was revealed. This study is beneficial for the understanding of land-atmosphere interaction over high mountain regions.


2020 ◽  
Vol 7 (3) ◽  
pp. 500-515 ◽  
Author(s):  
Yunfei Fu ◽  
Yaoming Ma ◽  
Lei Zhong ◽  
Yuanjian Yang ◽  
Xueliang Guo ◽  
...  

Abstract Correct understanding of the land-surface processes and cloud-precipitation processes in the Tibetan Plateau (TP) is an important prerequisite for the study and forecast of the downstream activities of weather systems and one of the key points for understanding the global atmospheric movement. In order to show the achievements that have been made, this paper reviews the progress on the observations for the atmospheric boundary layer, land-surface heat fluxes, cloud-precipitation distributions and vertical structures by using ground- and space-based multiplatform, multisensor instruments and the effect of the cloud system in the TP on the downstream weather. The results show that the form drag related to the topography, land–atmosphere momentum and scalar fluxes is an important part of the parameterization process. The sensible heat flux decreased especially in the central and northern TP caused by the decrease in wind speeds and the differences in the ground-air temperatures. Observations show that the cloud and precipitation over the TP have a strong diurnal variation. Studies also show the compressed-air column in the troposphere by the higher-altitude terrain of the TP makes particles inside clouds vary at a shorter distance in the vertical direction than those in the non-plateau area so that precipitation intensity over the TP is usually small with short duration, and the vertical structure of the convective precipitation over the TP is obviously different from that in other regions. In addition, the influence of the TP on severe weather downstream is preliminarily understood from the mechanism. It is necessary to use model simulations and observation techniques to reveal the difference between cloud precipitation in the TP and non-plateau areas in order to understand the cloud microphysical parameters over the TP and the processes of the land boundary layer affecting cloud, precipitation and weather in the downstream regions.


2019 ◽  
Author(s):  
Xiaoqi Xu ◽  
Chunsong Lu ◽  
Yangang Liu ◽  
Wenhua Gao ◽  
Yuan Wang ◽  
...  

Abstract. Overprediction of precipitation over the Tibetan Plateau is often found in numerical simulations, which is thought to be related to coarse grid sizes or inaccurate large-scale forcing. In addition to confirming the important role of model grid sizes, this study shows that liquid-phase precipitation parameterization is another key culprit, and underlying physical mechanisms are revealed. A typical summer plateau precipitation event is simulated with the Weather Research and Forecasting (WRF) model by introducing different parameterizations of liquid-phase microphysical processes into the commonly used Morrison scheme, including autoconversion, accretion, and entrainment-mixing mechanisms. All simulations can reproduce the general spatial distribution and temporal variation of precipitation. The precipitation in the high-resolution domain is less overpredicted than in the low-resolution domain. The accretion process plays more important roles than other liquid-phase processes in simulating precipitation. Employing the accretion parameterization considering raindrop size makes the total surface precipitation closest to the observation which is supported by the Heidke skill scores. The physical reason is that this accretion parameterization can suppress fake accretion and liquid-phase precipitation when cloud droplets are too small to initiate precipitation.


2020 ◽  
Vol 33 (15) ◽  
pp. 6583-6598
Author(s):  
Jianglin Wang ◽  
Bao Yang ◽  
Fredrik Charpentier Ljungqvist

AbstractAccurate projections of moisture variability across the Tibetan Plateau (TP) are crucial for managing regional water resources, ecosystems, and agriculture in densely populated downstream regions. Our understanding of how moisture conditions respond to increasing temperatures over the TP is still limited, due to the short length of instrumental data and the limited spatial coverage of high-resolution paleoclimate proxy records in this region. This study presents a new, early-summer (May–June) self-calibrating Palmer drought severity index (scPDSI) reconstruction for the southeastern TP (SETP) covering 1135–2010 CE using 14 tree-ring records based on 1669 individual width sample series. The new reconstruction reveals that the SETP experienced the longest period of pluvial conditions in 1154–75 CE, and the longest droughts during the periods 1262–80 and 1958–76 CE. The scPDSI reconstruction shows stable and significant in-phase relationships with temperature at both high and low frequencies throughout the past 900 years. This supports the hypothesis that climatic warming may increase moisture by enhancing moisture recycling and convective precipitation over the SETP; it is also consistent with climate model projections of wetter conditions by the late twenty-first century in response to global warming.


2018 ◽  
Author(s):  
Kadiri Saikranthi ◽  
Basivi Radhakrishna ◽  
Thota Narayana Rao ◽  
Sreedharan Krishnakumari Satheesh

Abstract. Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) 2A25 reflectivity profiles data during the period 1998–2013 are used to study the differences in the vertical structure of precipitation and its variation with sea surface temperature (SST) over the Arabian Sea (AS) and the Bay of Bengal (BOB). Even though the AS and the BOB are parts of the Indian Ocean, they exhibit distinct features in vertical structure of precipitation and its variation with SST. The variation of reflectivity and precipitation echo top occurrence with SST is remarkable over the AS but trivial over the BOB. The median reflectivity increases with SST at all heights below 10 km altitude, but the increase is prominent below the freezing level height over the AS. On the other hand, irrespective of altitude, reflectivity profiles are same at all SSTs over the BOB. To understand these differences, variation of aerosols, cloud and water vapor with SST is studied over these seas. At SSTs less than 27 °C, the observed high aerosol optical depth (AOD) and low total column water vapor (TCWV) over the AS results in small Cloud effective radius (CER) values and low reflectivity. As SST increases AOD decreases and TCWV increases, which result in large CER and high reflectivity. Over the BOB the change in AOD, TCWV and CER with SST is marginal. Thus, the observed variations in reflectivity profiles seem to be present from the cloud formation stage itself over both the seas.


Sign in / Sign up

Export Citation Format

Share Document