scholarly journals Lagrangian Gravity Wave spectra in the lower stratosphere of current (re)analyses

2020 ◽  
Author(s):  
Aurélien Podglajen ◽  
Albert Hertzog ◽  
Riwal Plougonven ◽  
Bernard Legras

Abstract. Due to their increasing spatial resolution, numerical weather prediction (NWP) models and the associated analyses resolve a growing fraction of the gravity wave (GW) spectrum. However, it is unclear how well this resolved part of the spectrum actually compares to the actual atmospheric variability. In particular, the Lagrangian variability, relevant, e.g., to atmospheric dispersion and to microphysical modeling in the Upper Troposphere-Lower Stratosphere (UTLS), has not yet been documented in recent products. To address this shortcoming, this paper presents an assessment of the GW spectrum as a function of the intrinsic (air parcel following) frequency in recent (re)analyses (ERA-interim, ERA5, the ECMWF operational analysis, MERRA-2 and JRA-55). Long-duration, quasi-Lagrangian balloon observations in the equatorial and Antarctic lower stratosphere are used as a reference for the atmospheric spectrum and compared to synthetic balloon observations along trajectories calculated using the wind and temperature fields of the reanalyses. Overall, the reanalyses represent realistic features of the spectrum, notably the spectral gap between planetary and gravity waves and a peak in horizontal kinetic energy associated with inertial waves near f in the polar region. In the tropics, they represent the slope of the spectrum at low frequency. However, the variability is generally underestimated, even in the low-frequency portion of the spectrum. In particular, the near-inertial peak, although present in the reanalyses, has a much reduced magnitude compared to balloon observations. We compare the variability of temperature, momentum flux and vertical wind speed, which are related to low, mid and high frequency waves, respectively. The distributions (PDFs) have similar shapes, but show increasing disagreement with increasing intrinsic frequency. Since at those altitudes they are mainly caused by gravity waves, we also compare the geographic distribution of vertical wind fluctuations in the different products, which emphasizes the increase of both GW variance and intermittency with horizontal resolution. Finally, we quantify the fraction of resolved variability and its dependency on model resolution for the different variables. In all (re)analyses products, a significant part of the variability is still missing and should hence be parameterized, in particular at high intrinsic frequency. Among the two polar balloon datasets used, one was broadcast on the global telecommunication system for assimilation in analyses while the other is made of independent observations (unassimilated in the reanalyses). Comparing the Lagrangian spectra between the two campaigns shows that they are largely influenced by balloon data assimilation, which especially enhances the variance at low frequency.

2020 ◽  
Vol 20 (15) ◽  
pp. 9331-9350 ◽  
Author(s):  
Aurélien Podglajen ◽  
Albert Hertzog ◽  
Riwal Plougonven ◽  
Bernard Legras

Abstract. Due to their increasing spatial resolution, numerical weather prediction (NWP) models and the associated analyses resolve a growing fraction of the gravity wave (GW) spectrum. However, it is unclear how well this “resolved” part of the spectrum truly compares to the actual atmospheric variability. In particular, the Lagrangian variability, relevant, for example, to atmospheric dispersion and to microphysical modeling in the upper troposphere–lower stratosphere (UTLS), has not yet been documented in recent products. To address this shortcoming, this paper presents an assessment of the GW spectrum as a function of the intrinsic (air parcel following) frequency in recent (re)analyses (ERA-Interim, ERA5, the ECMWF operational analysis and MERRA-2). Long-duration, quasi-Lagrangian balloon observations in the equatorial and Antarctic lower stratosphere are used as a reference for the atmospheric spectrum and are compared to synthetic balloon observations along trajectories calculated using the wind and temperature fields of the reanalyses. Overall, the reanalyses represent realistic features of the spectrum, notably the spectral gap between planetary and gravity waves and a peak in horizontal kinetic energy associated with inertial waves near the Coriolis frequency f in the polar region. In the tropics, they represent the slope of the spectrum at low frequency. However, the variability is generally underestimated even in the low-frequency portion of the spectrum. In particular, the near-inertial peak, although present in the reanalyses, has a reduced magnitude compared to balloon observations. We compare the observed and modeled variabilities of temperature, zonal momentum flux and vertical wind speed, which are related to low-, mid- and high-frequency waves, respectively. The probability density function (PDF) distributions have similar shapes but show increasing disagreement with increasing intrinsic frequency. Since at those altitudes they are mainly caused by gravity waves, we also compare the geographic distribution of vertical wind fluctuations in the different products, which emphasizes the increase of both GW variance and intermittency with horizontal resolution. Finally, we quantify the fraction of resolved variability and its dependency on model resolution for the different variables. In all (re)analysis products, a significant part of the variability is still missing, especially at high frequencies, and should hence be parameterized. Among the two polar balloon datasets used, one was broadcast on the Global Telecommunication System for assimilation in NWP models, while the other consists of independent observations (unassimilated in the reanalyses). Comparing the Lagrangian spectra between the two campaigns shows that the (re)analyses are largely influenced by balloon data assimilation, which especially enhances the variance at low GW frequency.


Author(s):  
Faith P. Groff ◽  
Rebecca D. Adams-Selin ◽  
Russ S. Schumacher

AbstractThis study investigates the sensitivities of mesoscale convective system (MCS) low-frequency gravity waves to changes in the vertical wind and thermodynamic profile through idealized cloud model simulations, highlighting how internal MCS processes impact low-frequency gravity wave generation, propagation, and environmental influence. Spectral analysis is performed on the rates of latent heat release, updraft velocity, and deep-tropospheric descent ahead of the convection as a signal for vertical wavenumber n = 1 wave passage. Results show that perturbations in mid-level descent up to 100 km ahead of the MCS occur at the same frequency as n = 1 gravity wave generation prompted by fluctuations in latent heat release due to the cellular variations of the MCS updrafts. Within a nocturnal environment, the frequency of the cellularity of the updrafts increases, subsequently increasing the frequency of n = 1 wave generation. In an environment with low-level unidirectional shear, results indicate that n = 2 wave generation mechanisms and environmental influence are similar among the simulated daytime and nocturnal MCSs. When deep vertical wind shear is incorporated, many of the low-frequency waves are strong enough to support cloud development ahead of the MCS as well as sustain and support convection.


2022 ◽  
Author(s):  
Axel Gabriel

Abstract. The increase in amplitudes of upward propagating gravity waves (GWs) with height due to decreasing density is usually described by exponential growth; however, recent measurements detected a much stronger increase in gravity wave potential energy density (GWPED) during daylight than night-time (increase by a factor of about 4 to 8 between middle stratosphere and upper mesosphere), which is not well understood up to now. This paper suggests that ozone-gravity wave interaction in the upper stratosphere/lower mesosphere is largely responsible for this phenomenon. The coupling between ozone-photochemistry and temperature is particularly strong in the upper stratosphere where the time-mean ozone mixing ratio is decreasing with height; therefore, an initial uplift of an air parcel must lead to a local increase in ozone and in the heating rate compared to the environment, and, hence, to an amplification of the initial uplift. Standard solutions of upward propagating GWs with linear ozone-temperature coupling are formulated suggesting local amplitude amplifications during daylight of 5 to 15 % for low-frequency GWs (periods ≥4 hours), as a function of the intrinsic frequency which decreases if ozone-temperature coupling is included. Subsequently, for horizontal wavelengths larger than 500 km and vertical wavelengths smaller than 5 km, the cumulative amplification during the upward level-by-level propagation leads to much stronger amplitudes in the GW perturbations (factor of about 1.5 to 3) and in the GWPED (factor of about 3 to 9) at upper mesospheric altitudes. The results open a new viewpoint for improving general circulation models with resolved or parameterized GWs.


2016 ◽  
Author(s):  
Fabrice Chane Ming ◽  
Damien Vignelles ◽  
Fabrice Jegou ◽  
Gwenael Berthet ◽  
Jean-Batiste Renard ◽  
...  

Abstract. Coupled balloon-borne observations of Light Optical Aerosol Counter (LOAC), M10 meteorological global positioning system (GPS) sondes, ozonesondes and GPS radio occultation data, are examined to identify gravity-wave (GW) induced fluctuations on tracer gases and on the vertical distribution of stratospheric aerosol concentrations during the 2013 ChArMEx (Chemistry-Aerosol Mediterranean Experiment) campaign. Observations reveal signatures of GWs with short vertical wavelengths less than 4 km in dynamical parameters and tracer constituents which are also correlated with the presence of thin layers of strong local enhancements of aerosol concentrations in the upper troposphere and the lower stratosphere. In particular, this is evident from a case study above Ile du Levant (43.02 °N, 6.46 °E) on 26–29 July 2013. Observations show a strong activity of dominant mesoscale inertia GWs with horizontal and vertical wavelengths of 370–510 km and 2–3 km respectively, and periods of 10–13 h propagating southward at altitudes of 13–20 km and eastward above 20 km during 27–28 July which is also captured by the European Center for Medium range Weather Forecasting (ECMWF) analyses. Ray-tracing experiments indicate the jet-front system to be the source of observed GWs. Simulated vertical profiles of dynamical parameters with large stratospheric vertical wind maximum oscillations ± 40 mms−1 are produced for the dominant mesoscale GW using the simplified linear GW theory. Parcel advection method reveals signatures of GWs in the ozone mixing ratio and the specific humidity. Simulated vertical wind perturbations of the dominant GW and small-scale perturbations of aerosol concentration (aerosol size of 0.2–0.7 μm) are in phase in the lower stratosphere. Present results support the importance of vertical wind perturbations in the GW-aerosol relation. The observed mesoscale GW induces a strong modulation of the amplitude of tracer gases and the stratospheric aerosol background.


2019 ◽  
Vol 76 (10) ◽  
pp. 3247-3265
Author(s):  
Yu Du ◽  
Richard Rotunno ◽  
Fuqing Zhang

Abstract The impact of vertical wind shear on the land–sea-breeze circulation at the equator is explored using idealized 2D numerical simulations and a simple 2D linear analytical model. Both the idealized and linear analytical models indicate Doppler shifting and attenuation effects coexist under the effect of vertical wind shear for the propagation of gravity waves that characterize the land–sea-breeze circulation. Without a background wind, the idealized sea breeze has two ray paths of gravity waves that extend outward and upward from the coast. A uniform background wind causes a tilting of the two ray paths due to Doppler shifting. With vertical shear in the background wind, the downstream ray path of wave propagation can be rapidly attenuated near a certain level, whereas the upstream ray path is not attenuated and the amplitudes even increase with height. The downstream attenuation level is found to descend with increasing linear wind shear. The present analytical model establishes that the attenuation level corresponds to the critical level where the background wind is equal to the horizontal gravity wave phase speed. The upstream gravity wave ray path can propagate upward without attenuation as there is no critical level there.


2008 ◽  
Vol 8 (22) ◽  
pp. 6775-6787 ◽  
Author(s):  
M. Rauthe ◽  
M. Gerding ◽  
F.-J. Lübken

Abstract. More than 230 nights of temperature measurements between 1 and 105 km have been performed at the Leibniz-Institute of Atmospheric Physics in Kühlungsborn with a combination of two different lidars, i.e. a Rayleigh-Mie-Raman lidar and a potassium lidar. About 1700 h of measurements have been collected between 2002 and 2006. Apart from some gaps due to the adverse weather conditions the measurements are well distributed throughout the year. Comprehensive information about the activity of medium- and low-frequency gravity waves was extracted from this data set. The dominating vertical wavelengths found are between 10 and 20 km and do not show any seasonal variation. In contrast the temperature fluctuations due to gravity waves experience a clear annual cycle with a maximum in winter. The most significant differences exist around 60 km where the fluctuations in winter are more than two times larger than they are in summer. Only small seasonal differences are observed above 90 km and below 35 km. Generally, the fluctuations grow from about 0.5 K up to 8 K between 20 and 100 km. Damping of waves is observed at nearly all altitudes and in all seasons. The planetary wave activity shows a similar structure in altitude and season as the gravity wave activity which indicates that similar mechanisms influencing different scales. Combining the monthly mean temperatures and the fluctuations we show that the transition between winter and summer season and vice versa seems to start in the mesopause region and to penetrate downward.


2008 ◽  
Vol 8 (4) ◽  
pp. 13741-13773 ◽  
Author(s):  
M. Rauthe ◽  
M. Gerding ◽  
F.-J. Lübken

Abstract. More than 230 nights of temperature measurements between 1 and 105 km have been performed at the Leibniz-Institute of Atmospheric Physics in Kühlungsborn with a combination of two different lidars, i.e. a Rayleigh-Mie-Raman lidar and a potassium lidar. About 1700 h of measurements have been collected between 2002 and 2006. Apart from some gaps due to the adverse weather conditions the measurements are well distributed throughout the year. Comprehensive information about the activity of medium- and low-frequency gravity waves was extracted from this data set. The dominating vertical wavelengths found are between 10 and 20 km and do not show any seasonal variation. In contrast the temperature fluctuations due to gravity waves experience a clear annual cycle with a maximum in winter. The most significant differences exist around 60 km where the fluctuations in winter are more than two times larger than they are in summer. Only small seasonal differences are observed above 90 km and below 35 km. Generally, the fluctuations grow from about 0.5 K up to 8 K between 20 and 100 km. Damping of waves is observed at nearly all altitudes and in all seasons. The planetary wave activity shows a similar structure in altitude and season as the gravity wave activity which indicates a strong coupling between the processes of the different scales. Combining the monthly mean temperatures and the fluctuations we show that the transition between winter and summer season and vice versa seems to start in the mesopause region and to penetrate downward.


2021 ◽  
Vol 21 (24) ◽  
pp. 18641-18668
Author(s):  
Cornelia Strube ◽  
Peter Preusse ◽  
Manfred Ern ◽  
Martin Riese

Abstract. In the southern winter polar stratosphere, the distribution of gravity wave momentum flux in many state-of-the-art climate simulations is inconsistent with long-time satellite and superpressure balloon observations around 60∘ S. Recent studies hint that a lateral shift between prominent gravity wave sources in the tropospheric mid-latitudes and the location where gravity wave activity is present in the stratosphere causes at least part of the discrepancy. This lateral shift cannot be represented by the column-based gravity wave drag parameterisations used in most general circulation models. However, recent high-resolution analysis and re-analysis products of the European Centre for Medium-Range Weather Forecasts Integrated Forecast System (ECMWF-IFS) show good agreement with the observations and allow for a detailed investigation of resolved gravity waves, their sources, and propagation paths. In this paper, we identify resolved gravity waves in the ECMWF-IFS analyses for a case of high gravity wave activity in the lower stratosphere using small-volume sinusoidal fits to characterise these gravity waves. The 3D wave vector together with perturbation amplitudes, wave frequency, and a fully described background atmosphere are then used to initialise the Gravity Wave Regional or Global Ray Tracer (GROGRAT) gravity wave ray tracer and follow the gravity waves backwards from the stratosphere. Finally, we check for the indication of source processes on the path of each ray and, thus, quantitatively attribute gravity waves to sources that are represented within the model. We find that stratospheric gravity waves are indeed subject to far (>1000 km) lateral displacement from their sources, which already take place at low altitudes (<20 km). Various source processes can be linked to waves within stratospheric gravity wave (GW) patterns, such as the orography equatorward of 50∘ S and non-orographic sources above the Southern Ocean. These findings may explain why superpressure balloons observe enhanced gravity wave momentum fluxes in the lower stratosphere over the Southern Ocean despite an apparent lack of sources at this latitude. Our results also support the need to improve gravity wave parameterisations to account for meridional propagation.


2005 ◽  
Vol 23 (10) ◽  
pp. 3237-3260 ◽  
Author(s):  
I. V. Subba Reddy ◽  
D. Narayana Rao ◽  
A. Narendra Babu ◽  
M. Venkat Ratnam ◽  
P. Kishore ◽  
...  

Abstract. MST radars are powerful tools to study the mesosphere, stratosphere and troposphere and have made considerable contributions to the studies of the dynamics of the upper, middle and lower atmosphere. Atmospheric gravity waves play a significant role in controlling middle and upper atmospheric dynamics. To date, frontal systems, convection, wind shear and topography have been thought to be the sources of gravity waves in the troposphere. All these studies pointed out that it is very essential to understand the generation, propagation and climatology of gravity waves. In this regard, several campaigns using Indian MST Radar observations have been carried out to explore the gravity wave activity over Gadanki in the troposphere and the lower stratosphere. The signatures of the gravity waves in the wind fields have been studied in four seasons viz., summer, monsoon, post-monsoon and winter. The large wind fluctuations were more prominent above 10 km during the summer and monsoon seasons. The wave periods are ranging from 10 min-175 min. The power spectral densities of gravity waves are found to be maximum in the stratospheric region. The vertical wavelength and the propagation direction of gravity waves were determined using hodograph analysis. The results show both down ward and upward propagating waves with a maximum vertical wave length of 3.3 km. The gravity wave associated momentum fluxes show that long period gravity waves carry more momentum flux than the short period waves and this is presented.


2021 ◽  
Author(s):  
Abdellatif Benchafaa ◽  
Samir Nait Amor ◽  
Ghazali Mebarki

Abstract. In this work we show the result of the numerical simulation of the gravity waves (GWs) D region disturbance. Effectively, using the Glukhov-Pasko-Inan (GPI) model of the electron density in the D region we were figured out the response of the electron density due to gravity wave neutral atmosphere oscillation. As a consequence to the D region disturbance, the electron density sometimes increases when the neutral atmosphere density decreases and vice versa. This behavior was interpreted by the decreases or increases of ionization rate by chemical loss process. In a second simulation work, we used the Long Wave Propagation Capability (LWPC) code to simulate the Very Low Frequency (VLF) signal when the gravity wave disturbance crossed the VLF path. The effect of the disturbance is to decrease the VLF signal reflection height below the ambient altitude (87 km) when the electron density increases. On the other hand and when the electron density drops, the VLF reflection altitude increased higher than 87 km.


Sign in / Sign up

Export Citation Format

Share Document