scholarly journals Potential new tracers and their relative emission factors for burning household waste in stoves

2021 ◽  
Author(s):  
András Hoffer ◽  
Ádám Tóth ◽  
Beatrix Jancsek-Turóczi ◽  
Attila Machon ◽  
Aida Meiramova ◽  
...  

Abstract. The production and use of plastics increases rapidly as they are widely used in packaging, construction materials, furniture, foils, etc. As a consequence of their widespread use and often disposable character, vast streams of plastic wastes are continuously generated, a considerable fraction of which are combusted in households worldwide. In this paper, various types of commonly used plastics (PE, PET, PP, PU, PVC, PS, ABS), as well as treated wood samples (LDF) and firewood were combusted separately in a test stove under controlled conditions. The particulates emitted during the combustion test were collected on filters, and potential tracers for each waste type were identified by GC-MS, and their relative abundances were determined. The emission factor of 1,3,5-triphenylbenzene was found to be higher for polymers containing aromatic rings in their structure. The application of terphenyls and quarterphenyls as tracer compounds has also been investigated. The trimer of styrene was found to be a potential tracer for the combustion of polystyrene and/or styrene containing copolymers. Novel tracers were proposed for the burning of PET and furniture plates (LDF), which are among the most widely used waste types burned in households.

2021 ◽  
Vol 21 (23) ◽  
pp. 17855-17864
Author(s):  
András Hoffer ◽  
Ádám Tóth ◽  
Beatrix Jancsek-Turóczi ◽  
Attila Machon ◽  
Aida Meiramova ◽  
...  

Abstract. The production and use of plastics is increasing rapidly as they are widely used in packaging, construction materials, furniture, foils, etc. As a consequence of their widespread use and often disposable nature, vast streams of plastic waste are continuously generated, a considerable fraction of which are combusted in households worldwide. In this paper, various types of commonly used plastics (PE, PET, PP, PU, PVC, PS, ABS) as well as treated wood samples (LDF, low-density fibreboard) and firewood were combusted separately in a test stove under controlled conditions. The particulates emitted during the combustion test were collected on filters, potential tracers for each waste type were identified by GC-MS, and their relative abundances were determined. The emission factor of 1,3,5-triphenylbenzene was found to be higher for polymers containing aromatic rings in their structure. The application of terphenyls and quaterphenyls as tracer compounds has also been investigated. The trimer of styrene was found to be a potential tracer for the combustion of polystyrene and/or styrene-containing copolymers. Novel tracers were proposed for the burning of PET and furniture plates (LDF), which are among the most widely used waste types burned in households.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3549
Author(s):  
Tulane Rodrigues da Silva ◽  
Afonso Rangel Garcez de Azevedo ◽  
Daiane Cecchin ◽  
Markssuel Teixeira Marvila ◽  
Mugahed Amran ◽  
...  

The urbanization process contributes to the growth of solid waste generation and causes an increase in environmental impacts and failures in the management of solid waste. The number of dumps is a concern due to the limited implementation and safe disposal of this waste. The interest in sustainable techniques has been growing in relation to waste management, which is largely absorbed by the civil construction sector. This work aimed to review plastic waste, especially polyethylene terephthalate (PET), that can be incorporated with construction materials, such as concrete, mortars, asphalt mixtures, and paving. The use of life-cycle assessment (LCA) is related, as a tool that allows the sustainability of products and processes to be enhanced in the long term. After analyzing the recent literature, it was identified that studies related to plastic wastes in construction materials concentrate sustainability around the alternative destination of waste. Since the plastic waste from different production chains are obtained, it was possible to affirm the need for a broader assessment, such as the LCA, providing greater quantification of data making the alternative processes and products more sustainable. The study contributes to enhance sustainability in alternative building materials through LCA.


2021 ◽  
Vol 13 (4) ◽  
pp. 2197
Author(s):  
Seongmin Kang ◽  
Joonyoung Roh ◽  
Eui-chan Jeon

NH3 is one of the major substances contributing to the secondary generation of PM2.5; therefore, management is required. In Korea, the management of NH3 is insufficient, and the emission factor used by EPA is the same as the one used when calculating emissions. In particular, waste incineration facilities do not currently calculate NH3 emissions. In the case of combustion facilities, the main ammonia emission source is the De-NOx facility, and, in the case of a power plant with a De-NOx facility, NH3 emission is calculated. Therefore, in the case of a Municipal Solid Waste (MSW) incinerator with the same facility installed, it is necessary to calculate NH3 emissions. In this study, the necessity of developing NH3 emission factors for an MSW incinerator and calculating emission was analyzed. In addition, elements to be considered when developing emission factors were analyzed. The study found that the NH3 emission factors for each MSW incinerator technology were calculated as Stoker 0.010 NH3 kg/ton and Fluidized Beds 0.004 NH3 kg/ton, which was greater than the NH3 emission factor 0.003 NH3 kg/ton for the MSW incinerator presented in EMEP/EEA (2016). As a result, it was able to identify the need for the development of NH3 emission factors in MSW incinerators in Korea. In addition, the statistical analysis of the difference between the incineration technology of MSW and the NH3 emission factor by the De-NOx facility showed a difference in terms of both incineration technology and De-NOx facilities, indicating that they should be considered together when developing the emission factor. In addition to MSW, it is believed that it will be necessary to review the development of emission factors for waste at workplaces and incineration facilities of sewage sludge.


2008 ◽  
Vol 5 (5) ◽  
pp. 1215-1226 ◽  
Author(s):  
D. Weymann ◽  
R. Well ◽  
H. Flessa ◽  
C. von der Heide ◽  
M. Deurer ◽  
...  

Abstract. We investigated the dynamics of denitrification and nitrous oxide (N2O) accumulation in 4 nitrate (NO−3) contaminated denitrifying sand and gravel aquifers of northern Germany (Fuhrberg, Sulingen, Thülsfelde and Göttingen) to quantify their potential N2O emission and to evaluate existing concepts of N2O emission factors. Excess N2 – N2 produced by denitrification – was determined by using the argon (Ar) concentration in groundwater as a natural inert tracer, assuming that this noble gas functions as a stable component and does not change during denitrification. Furthermore, initial NO−3 concentrations (NO−3 that enters the groundwater) were derived from excess N2 and actual NO−3 concentrations in groundwater in order to determine potential indirect N2O emissions as a function of the N input. Median concentrations of N2O and excess N2 ranged from 3 to 89 μg N L−1 and from 3 to 10 mg N L−1, respectively. Reaction progress (RP) of denitrification was determined as the ratio between products (N2O-N + excess N2) and starting material (initial NO−3 concentration) of the process, characterizing the different stages of denitrification. N2O concentrations were lowest at RP close to 0 and RP close to 1 but relatively high at a RP between 0.2 and 0.6. For the first time, we report groundwater N2O emission factors consisting of the ratio between N2O-N and initial NO−3-N concentrations (EF1). In addition, we determined a groundwater emission factor (EF2) using a previous concept consisting of the ratio between N2O-N and actual NO−3-N concentrations. Depending on RP, EF(1) resulted in smaller values compared to EF(2), demonstrating (i) the relevance of NO−3 consumption and consequently (ii) the need to take initial NO−3-N concentrations into account. In general, both evaluated emission factors were highly variable within and among the aquifers. The site medians ranged between 0.00043–0.00438 for EF(1) and 0.00092–0.01801 for EF(2), respectively. For the aquifers of Fuhrberg and Sulingen, we found EF(1) median values which are close to the 2006 IPCC default value of 0.0025. In contrast, we determined significant lower EF values for the aquifers of Thülsfelde and Göttingen. Summing the results up, our study supports the substantial downward revision of the IPCC default EF5-g from 0.015 (1997) to 0.0025 (2006).


Author(s):  
Andres Winston C. Oreta ◽  
Maejann E. Cuartero ◽  
Nikko Paolo P. Villanueva

<p>Sustainable construction can be promoted by producing construction materials with recycled waste. This study aims to address the issue of recycling plastic wastes and providing a means of livelihood in a relocation site of typhoon victims and urban settlers in Metro Manila by exploring the production of quality concrete hollow blocks (CHB) mixed with waste plastic wastes. In the study, the strength properties of concrete with various types of plastic wastes (PW) such as plastic bags (PB) and noodle wrappers (NW) as substitute to fine aggregates were investigated. Different percent substitutions, specifically 2.5%, 5%, 7.5% and 10%, were considered for each mix. The behaviour and strength properties of the concrete with and without PW were analysed and compared Moreover, the microscopic structures of the various types of mixes were observed using a Scanning Electron Microscopy (SEM) and related to the failure mode and strength performance. Results show that concrete with PB outperformed the other concrete mixes with plastics due to the plastic bag’s high stretchable property, compared to the noodle wrappers. In addition, plastics, in general, provide additional ductility to the concrete enabling them to tolerate more deformation at lower loads. The final product of the study is a mix design for producing non-load bearing concrete hollow blocks (CHB) that can be used for low-cost housing in the Philippines.</p>


2018 ◽  
Vol 18 (10) ◽  
pp. 7691-7708 ◽  
Author(s):  
Sekou Keita ◽  
Cathy Liousse ◽  
Véronique Yoboué ◽  
Pamela Dominutti ◽  
Benjamin Guinot ◽  
...  

Abstract. A number of campaigns have been carried out to establish the emission factors of pollutants from fuel combustion in West Africa, as part of work package 2 (“Air Pollution and Health”) of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) FP7 program. Emission sources considered here include wood (hevea and iroko) and charcoal burning, charcoal making, open trash burning, and vehicle emissions, including trucks, cars, buses and two-wheeled vehicles. Emission factors of total particulate matter (TPM), elemental carbon (EC), primary organic carbon (OC) and volatile organic compounds (VOCs) have been established. In addition, emission factor measurements were performed in combustion chambers in order to reproduce field burning conditions for a tropical hardwood (hevea), and obtain particulate emission factors by size (PM0.25, PM1, PM2.5 and PM10). Particle samples were collected on quartz fiber filters and analyzed using gravimetric method for TPM and thermal methods for EC and OC. The emission factors of 58 VOC species were determined using offline sampling on a sorbent tube. Emission factor results for two species of tropical hardwood burning of EC, OC and TPM are 0.98 ± 0.46 g kg−1 of fuel burned (g kg−1), 11.05 ± 4.55 and 41.12 ± 24.62 g kg−1, respectively. For traffic sources, the highest emission factors among particulate species are found for the two-wheeled vehicles with two-stroke engines (2.74 g kg−1 fuel for EC, 65.11 g kg−1 fuel for OC and 496 g kg−1 fuel for TPM). The largest VOC emissions are observed for two-stroke two-wheeled vehicles, which are up to 3 times higher than emissions from light-duty and heavy-duty vehicles. Isoprene and monoterpenes, which are usually associated with biogenic emissions, are present in almost all anthropogenic sources investigated during this work and could be as significant as aromatic emissions in wood burning (1 g kg−1 fuel). EC is primarily emitted in the ultrafine fraction, with 77 % of the total mass being emitted as particles smaller than 0.25 µm. The particles and VOC emission factors obtained in this study are generally higher than those in the literature whose values are discussed in this paper. This study underlines the important role of in situ measurements in deriving realistic and representative emission factors.


2021 ◽  
Author(s):  
András Hoffer ◽  
Ádám Tóth ◽  
Beatrix Jancsek-Turóczi ◽  
Attila Machon ◽  
Aida Meiramova ◽  
...  

2014 ◽  
Vol 14 (5) ◽  
pp. 6311-6360 ◽  
Author(s):  
T. E. L. Smith ◽  
C. Paton-Walsh ◽  
C. P. Meyer ◽  
G. D. Cook ◽  
S. W. Maier ◽  
...  

Abstract. Savanna fires contribute approximately 40–50% of total global annual biomass burning carbon emissions. Recent comparisons of emission factors from different savanna regions have highlighted the need for a regional approach to emission factor development, and better assessment of the drivers of the temporal and spatial variation in emission factors. This paper describes the results of open-path Fourier Transform Infrared (OP-FTIR) spectroscopic field measurements at twenty-one fires occurring in the tropical savannas of the Northern Territory, Australia, within different vegetation assemblages and at different stages of the dry season. Spectra of infrared light passing through a long (22–70 m) open-path through ground-level smoke released from these fires were collected using an infrared lamp and a field-portable FTIR system. The IR spectra were used to retrieve the mole fractions of fourteen different gases present within the smoke, and these measurements used to calculate the emission ratios and emission factors of the various gases emitted by the burning. Only a handful of previous emission factor measures are available specifically for the tropical savannas of Australia and here we present the first reported emission factors for methanol, acetic acid, and formic acid for this biome. Given the relatively large sample size, it was possible to study the potential causes of the within-biome variation of the derived emission factors. We find that the emission factors vary substantially between different savanna vegetation assemblages; with a majority of this variation being mirrored by variations in the modified combustion efficiency (MCE) of different vegetation classes. We conclude that a significant majority of the variation in the emission factor for trace gases can be explained by MCE, irrespective of vegetation class, as illustrated by variations in the calculated methane emission factor for different vegetation classes using data subsetted by different combustion efficiencies. Therefore, the selection of emission factors for emissions modelling purposes need not necessarily require detailed fuel type information, if data on MCE (e.g. from future spaceborne total column measurements) or a correlated variable were available. From measurements at twenty-one fires, we recommend the following emission factors for Australian tropical savanna fires (in grams of gas emitted per kilogram of dry fuel burned) which are our mean measured values: 1674 g kg−1 of carbon dioxide; 87 g kg−1 of carbon monoxide; 2.1 g kg−1 of methane; 0.11 g kg−1 of acetylene; 0.49 g kg−1 of ethylene; 0.08 g kg−1 of ethane; 1.57 g kg−1 of formaldehyde; 1.06 g kg−1 of methanol; 1.54 g kg−1 of acetic acid; 0.16 g kg−1 of formic acid; 0.53 g kg−1 of hydrogen cyanide; and 0.70 g kg−1 of ammonia.


2021 ◽  
Vol 1208 (1) ◽  
pp. 012025
Author(s):  
Redžo Hasanagić ◽  
Sauradipta Ganguly ◽  
Ermin Bajramović ◽  
Adem Hasanagić

Abstract Wood is one of the most important construction materials in Europe and its use in building applications has increased in the recent decades. To enable even more extensive and reliable use of wood, this article aimed to determine the effect of thermal modification on mechanical properties of fir wood (lat. Abies sp.), linden wood (lat. Tilia sp.), and beech wood (lat. Fagus sp.). The thermal modification was conducted in a laboratory oven at five different temperatures of 170, 180, 195, 210, 220 °C and processed with a different maximum duration of the process of 78, 120, 180, 240, 276 minutes. Mechanical properties of treated wood have shown statistically insignificant fluctuations at lower temperatures compared to control samples. On the other hand, raising the temperature to 210 °C significantly affected the strength of all the species. The results revealed that thermal modification at high temperatures and longer exposure causes a decrease in the maximum force of the three wood species.


Sign in / Sign up

Export Citation Format

Share Document