scholarly journals Identifying the spatiotemporal variations in ozone formation regimes across China from 2005 to 2019 based on polynomial simulation and causality analysis

2021 ◽  
Vol 21 (20) ◽  
pp. 15631-15646
Author(s):  
Ruiyuan Li ◽  
Miaoqing Xu ◽  
Manchun Li ◽  
Ziyue Chen ◽  
Na Zhao ◽  
...  

Abstract. Ozone formation regimes are closely related to the ratio of volatile organic compounds (VOCs) to NOx. Different ranges of HCHO/NO2 indicate three formation regimes, including VOC-limited, transitional, and NOx-limited regimes. Due to the unstable interactions between a diversity of precursors, the range of the transitional regime, which plays a key role in identifying ozone formation regimes, remains unclear. To overcome the uncertainties from single models and the lack of reference data, we employed two models, polynomial simulation and convergent cross-mapping (CCM), to identify the ranges of HCHO/NO2 across China based on ground observations and remote sensing datasets. The ranges of the transitional regime estimated by polynomial simulation and CCM were [1.0, 1.9] and [1.0, 1.8]. Since 2013, the ozone formation regime has changed to the transitional and NOx-limited regime all over China, indicating that ozone concentrations across China were mainly controlled by NOx. However, despite the NO2 concentrations, HCHO concentrations continuously exert a positive influence on ozone concentrations under transitional and NOx-limited regimes. Under the circumstance of national NOx reduction policies, the increase in VOCs became the major driver for the soaring ozone pollution across China. For an effective management of ozone pollution across China, the emission reduction in VOCs and NOx should be equally considered.

2021 ◽  
Author(s):  
Ruiyuan Li ◽  
Miaoqing Xu ◽  
Manchun Li ◽  
Ziyue Chen ◽  
Bingbo Gao ◽  
...  

Abstract. Ozone formation regimes are closely related to the ratio of VOCs to NOx. Different ranges of HCHO/NO2 indicate three formation regimes, including VOCs-limited, transitional and NOx-limited regimes. Due to the unstable interactions between a diversity of precursors, the range of transitional regime, which plays a key role in identifying ozone formation regimes, remains unclear. To overcome the uncertainties from single models and the lack of reference data, we employed two models, polynomial simulation and Convergent Cross Mapping (CCM), to identify the ranges of HCHO/NO2 across China based on ground observations and remote sensing datasets. The ranges of transitional regime estimated by polynomial simulation and CCM were [1.0, 1.9] and [1.0, 1.8]. Since 2013, ozone formation regime has changed to the transitional and NOx-limited regime all over China, indicating ozone concentrations across China were mainly controlled by NOx. However, despite the NO2 concentrations, HCHO concentrations continuously exert a positive influence on ozone concentrations under transitional and NOx-limited regimes. Under the circumstance of national NOx-reduction policies, the increase of VOCs became the major driver for the soaring ozone pollution across China. For an effective management of ozone pollution across China, the emission-reduction of VOCs and NOx should be equally considered.


2008 ◽  
Vol 2 (1) ◽  
pp. 9-15 ◽  
Author(s):  
N. Castell ◽  
A. F. Stein ◽  
R. Salvador ◽  
E. Mantilla ◽  
M. Millán

Abstract. Throughout Europe the summer of 2003 was exceptionally warm, especially July and August. The European Environment Agency (EEA) reported several ozone episodes, mainly in the first half of August. These episodes were exceptionally long-lasting, spatially extensive, and associated to high temperatures. In this paper, the 10$ndash;15 August 2003 ozone pollution event has been analyzed using meteorological and regional air quality modelling. During this period the threshold values of the European Directive 2002/3/EC were exceeded in various areas of the Iberian Peninsula. The aim of this paper is to computationally understand and quantify the influence of biogenic volatile organic compound (BVOC) emissions in the formation of tropospheric ozone during this high ozone episode. Being able to differentiate how much ozone comes from biogenic emissions alone and how much comes from the interaction between anthropogenic and biogenic emissions would be helpful to develop a feasible and effective ozone control strategy. The impact on ozone formation was also studied in combination with various anthropogenic emission reduction strategies, i.e., when anthropogenic VOC emissions and/or NOx emissions are reduced. The results show a great dependency of the BVOC contribution to ozone formation on the antropoghenic reduction scenario. In rural areas, the impact due to a NOx and/or VOC reduction does not change the BVOC impact. Nevertheless, within big cities or industrial zones, a NOx reduction results in a decrease of the biogenic impact in ozone levels that can reach 85 μg/m3, whereas an Anthropogenic Volatile Organic Compound (AVOC) reduction results in a decrease of the BVOC contribution on ozone formation that varies from 0 to 30 μg/m3 with respect to the contribution at the same points in the 2003 base scenario. On the other hand, downwind of the big cities, a decrease in NOx produces a minor contribution of biogenic emissions and a decrease in AVOCs results in greater contributions of BVOCs to the formation of ozone.


Author(s):  
Yuxiu Zhang ◽  
Tingting Zang ◽  
Bo Yan ◽  
Chaohai Wei

Ozone pollution, which can be caused by photochemical reactions, has become a serious problem. The ozone formation potential (OFP) is used to describe the photochemical reactivity. Volatile organic compounds (VOCs) are main precursors of ozone formation, and wastewater treatment plants (WWTPs) are important sources of VOCs. Therefore, it is necessary to study the concentration level and OFP of VOCs from WWTPs. In this work, a coking WWTP with anaerobic-oxic-oxic (A/O/O) processes in Shaoguan city, Guangdong province, China, was selected to investigate the characteristics of VOCs at wastewater treatment areas and office areas. The OFP of VOCs was estimated by the maximum incremental reactivity (MIR) coefficient method. Results showed that 17 VOCs were detected, and the total concentration of VOCs was the highest at the raw water tank (857.86 μg m−3). The benzene series accounted for 69.0%–86.9% and was the main component of VOCs in the WWTP. Based on OFP data, the top six VOCs contributing most to the OFP were m-xylene, toluene, p-xylene, o-xylene, styrene, and benzene. This study provides field data and information on the environmental risk of VOCs for coking companies and environmental departments. We found that the priority control sources of VOCs were wastewater treatment units because of their larger OFP contributions.


Eos ◽  
2015 ◽  
Vol 96 ◽  
Author(s):  
Gunnar W. Schade ◽  
Geoffrey S. Roest

Concentrations of volatile organic compounds—precursors to ground-level ozone formation—are on the rise in areas over and downwind of a major shale oil and gas field in Texas.


Author(s):  
An Zhang ◽  
Jinhuang Lin ◽  
Wenhui Chen ◽  
Mingshui Lin ◽  
Chengcheng Lei

Long-term exposure to ozone pollution will cause severe threats to residents’ physical and mental health. Ground-level ozone is the most severe air pollutant in China’s Pearl River Delta Metropolitan Region (PRD). It is of great significance to accurately reveal the spatial–temporal distribution characteristics of ozone pollution exposure patterns. We used the daily maximum 8-h ozone concentration data from PRD’s 55 air quality monitoring stations in 2015 as input data. We used six models of STK and ordinary kriging (OK) for the simulation of ozone concentration. Then we chose a better ozone pollution prediction model to reveal the ozone exposure characteristics of the PRD in 2015. The results show that the Bilonick model (BM) model had the highest simulation precision for ozone in the six models for spatial–temporal kriging (STK) interpolation, and the STK model’s simulation prediction results are significantly better than the OK model. The annual average ozone concentrations in the PRD during 2015 showed a high spatial variation in the north and east and low in the south and west. Ozone concentrations were relatively high in summer and autumn and low in winter and spring. The center of gravity of ozone concentrations tended to migrate to the north and west before moving to the south and then finally migrating to the east. The ozone’s spatial autocorrelation was significant and showed a significant positive correlation, mainly showing high-high clustering and low-low clustering. The type of clustering undergoes temporal migration and conversion over the four seasons, with spatial autocorrelation during winter the most significant.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1365
Author(s):  
Kun He ◽  
Zhenxing Shen ◽  
Jian Sun ◽  
Yali Lei ◽  
Yue Zhang ◽  
...  

The profiles, contributions to ozone formation, and associated health risks of 56 volatile organic compounds (VOCs) species were investigated using high time resolution observations from photochemical assessment monitoring stations (PAMs) in Luoyang, China. The daily averaged concentration of total VOCs (TVOCs) was 21.66 ± 10.34 ppbv in urban areas, 14.45 ± 7.40 ppbv in suburbs, and 37.58 ± 13.99 ppbv in an industrial zone. Overall, the VOCs levels in these nine sites followed a decreasing sequence of alkanes > aromatics > alkenes > alkyne. Diurnal variations in VOCs exhibited two peaks at 8:00–9:00 and 19:00–20:00, with one valley at 23:00–24:00. Source apportionment indicated that vehicle and industrial emissions were the dominant sources of VOCs in urban and suburban sites. The industrial site displayed extreme levels, with contributions from petrochemical-related sources of up to 38.3%. Alkenes and aromatics displayed the highest ozone formation potentials because of their high photochemical reactivity. Cancer and noncancer risks in the industrial site were higher than those in the urban and suburban areas, and USEPA possible risk thresholds were reached in the industrial site, indicating PAMs VOC–related health problems cannot be ignored. Therefore, vehicle and industrial emissions should be prioritized when considering VOCs and O3 control strategies in Luoyang.


2021 ◽  
Author(s):  
Sally Jahn ◽  
Elke Hertig

<p>Air pollution and heat events present two major health risks, both already independently posing a significant threat to human health and life. High levels of ground-level ozone (O<sub>3</sub>) and air temperature often coincide due to the underlying physical relationships between both variables. The most severe health outcome is in general associated with the co-occurrence of both hazards (e.g. Hertig et al. 2020), since concurrent elevated levels of temperature and ozone concentrations represent a twofold exposure and can lead to a risk beyond the sum of the individual effects. Consequently, in the current contribution, a compound approach considering both hazards simultaneously as so-called ozone-temperature (o-t-)events is chosen by jointly analyzing elevated ground-level ozone concentrations and air temperature levels in Europe.</p><p>Previous studies already point to the fact that the relationship of underlying synoptic and meteorological drivers with one or both of these health stressors as well as the correlation between both variables vary with the location of sites and seasons (e.g. Otero et al. 2016; Jahn, Hertig 2020). Therefore, a hierarchical clustering analysis is applied to objectively divide the study domain in regions of homogeneous, similar ground-level ozone and temperature characteristics (o-t-regions). Statistical models to assess the synoptic and large-scale meteorological mechanisms which represent main drivers of concurrent o-t-events are developed for each identified o-t-region.</p><p>Compound elevated ozone concentration and air temperature events are expected to become more frequent due to climate change in many parts of Europe (e.g. Jahn, Hertig 2020; Hertig 2020). Statistical projections of potential frequency shifts of compound o-t-events until the end of the twenty-first century are assessed using the output of Earth System Models (ESMs) from the sixth phase of the Coupled Model Intercomparison Project (CMIP6).</p><p><em>Hertig, E. (2020) Health-relevant ground-level ozone and temperature events under future climate change using the example of Bavaria, Southern Germany. Air Qual. Atmos. Health. doi: 10.1007/s11869-020-00811-z</em></p><p><em>Hertig, E., Russo, A., Trigo, R. (2020) Heat and ozone pollution waves in Central and South Europe- characteristics, weather types, and association with mortality. Atmosphere. doi: 10.3390/atmos11121271</em></p><p><em>Jahn, S., Hertig, E. (2020) Modeling and projecting health‐relevant combined ozone and temperature events in present and future Central European climate. Air Qual. Atmos. Health. doi: 10.1007/s11869‐020‐009610</em></p><p><em>Otero N., Sillmann J., Schnell J.L., Rust H.W., Butler T. (2016) Synoptic and meteorological drivers of extreme ozone concentrations over Europe. Environ Res Lett. doi: 10.1088/ 1748-9326/11/2/024005</em></p>


Sign in / Sign up

Export Citation Format

Share Document