scholarly journals Observed trends in clouds and precipitation (1983–2009): implications for their cause(s)

2021 ◽  
Vol 21 (6) ◽  
pp. 4899-4913
Author(s):  
Xiang Zhong ◽  
Shaw Chen Liu ◽  
Run Liu ◽  
Xinlu Wang ◽  
Jiajia Mo ◽  
...  

Abstract. Satellite observations (International Satellite Cloud Climatology Project (ISCCP), 1983–2009) of linear trends in cloud cover are compared to those in global precipitation (Global Precipitation Climatology Project (GPCP) pentad V2.2, 1983–2009), to investigate possible cause(s) of the linear trends in both cloud cover and precipitation. The spatial distributions of the linear trends in total cloud cover and precipitation are both characterized primarily by a broadening of the major ascending zone of Hadley circulation. Our correlation studies suggest that global warming, Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO) can explain 67 %, 49 % and 38 %, respectively, of the spatial variabilities in the linear trends in cloud cover, but causality is harder to establish. Further analysis of the broadening of the major ascending zone of Hadley circulation shows that the trend in global temperature, rather than those in AMO and PDO, is the primary contributor to the observed linear trends in total cloud cover and precipitation in 1983–2009. The underlying mechanism driving this broadening is proposed to be the moisture–convection–latent-heat feedback cycle under global warming conditions. The global analysis is extended by investigating connections between clouds and precipitation in China, based on a large number of long-running, high-quality surface weather stations in 1957–2005. This reveals a quantitative matching relationship between the reduction in light precipitation and the reduction in total cloud cover. Furthermore, our study suggests that the reduction in cloud cover in China is primarily driven by global temperature; PDO plays a secondary role, while the contribution from AMO and Niño3.4 is insignificant, consistent with the global analysis.

2020 ◽  
Author(s):  
Xiang Zhong ◽  
Shaw Chen Liu ◽  
Run Liu ◽  
Xinlu Wang ◽  
Jiajia Mo ◽  
...  

Abstract. Satellite observations (ISCCP, 1983–2009) of linear trends in cloud cover are compared to those in global precipitation (GPCP pentad V2.2, 1983–2009), to investigate possible cause(s) of the linear trends in both cloud cover and precipitation. The spatial distributions of the linear trends of total cloud cover and precipitation are both characterized primarily by the widening of Hadley circulation and poleward shifts of the jet streams associated with global warming. Our studies suggest that global warming, AMO and PDO can explain 67 %, 49 % and 38 %, respectively, of the spatial variabilities of the linear trends in cloud cover. A linear combination of global warming and AMO can explain as much as 74 % and 79 %, respectively, of the spatial variabilities of linear trends in cloud cover and precipitation. Analysis of the cloud cover and precipitation data (1957–2005) from Chinese surface meteorological stations reveals a quantitative matching relationship between the reduction in light precipitation and the reduction of total cloud cover. Furthermore, our study suggests that the reduction of cloud cover in China is primarily driven by the moisture–convection–latent heat feedback cycle under increasing global temperature conditions, PDO plays a secondary role, and the contribution from AMO and Niño3.4 is insignificant, consistent with the global analysis.


2021 ◽  
Vol 13 (5) ◽  
pp. 917
Author(s):  
Helen Chedzey ◽  
W. Paul Menzel ◽  
Mervyn Lynch

A long-term archive of cloud properties (cloud top pressure, CTP; and cloud effective emissivity, ε) determined from High-resolution Infrared Radiation Sounder (HIRS) data is investigated for evidence of regional cloud cover change. In the 17 years between 1985 and 2001, different cloud types are analysed over the Australian region (10° S–45° S, 105° E–160° E) and areas of change in total cloud frequency examined. Total cloud frequency change over the Australian region between two adjacent eight-year time periods (1994 to 2001 minus 1985 to 1992) shows the largest increases (ranges between 6% and 12%) of average HIRS total cloud cover occurring over the offshore regions to the northwest and northeast of the continent. Over land, the largest reduction of average HIRS total cloud frequency is in the southwestern region of Australia (between 2% and 8%). Through central Australia, there is a 2% to 7% increase in average HIRS total cloud frequency when comparing these eight-year periods. This paper examines the regional cloud changes in 17 years over Australia that are embedded in global cloud statistics. Examining total HIRS cloud cover frequency over Australia and comparing two different eight-year time periods, has highlighted notable areas of average change. Preliminary reporting of satellite-derived HIRS cloud products and Global Precipitation Climatology Project (GPCP) rainfall products during La Niña seasons between 1985 and 2001 has also been undertaken.


2021 ◽  
Vol 13 (9) ◽  
pp. 1716
Author(s):  
Ankur Srivastava ◽  
Jose F. Rodriguez ◽  
Patricia M. Saco ◽  
Nikul Kumari ◽  
Omer Yetemen

Atmospheric transmissivity (τ) is a critical factor in climatology, which affects surface energy balance, measured at a limited number of meteorological stations worldwide. With the limited availability of meteorological datasets in remote areas across different climatic regions, estimation of τ is becoming a challenging task for adequate hydrological, climatic, and crop modeling studies. The availability of solar radiation data is comparatively less accessible on a global scale than the temperature and precipitation datasets, which makes it necessary to develop methods to estimate τ. Most of the previous studies provided region specific datasets of τ, which usually provide local assessments. Hence, there is a necessity to give the empirical models for τ estimation on a global scale that can be easily assessed. This study presents the analysis of the τ relationship with varying geographic features and climatic factors like latitude, aridity index, cloud cover, precipitation, temperature, diurnal temperature range, and elevation. In addition to these factors, the applicability of these relationships was evaluated for different climate types. Thus, empirical models have been proposed for each climate type to estimate τ by using the most effective factors such as cloud cover and aridity index. The cloud cover is an important yet often overlooked factor that can be used to determine the global atmospheric transmissivity. The empirical relationship and statistical indicator provided the best performance in equatorial climates as the coefficient of determination (r2) was 0.88 relatively higher than the warm temperate (r2 = 0.74) and arid regions (r2 = 0.46). According to the results, it is believed that the analysis presented in this work is applicable for estimating the τ in different ecosystems across the globe.


2018 ◽  
Vol 18 (10) ◽  
pp. 7329-7343 ◽  
Author(s):  
Jiming Li ◽  
Qiaoyi Lv ◽  
Bida Jian ◽  
Min Zhang ◽  
Chuanfeng Zhao ◽  
...  

Abstract. Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007–2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into account in the parameterization of decorrelation length scale L in order to further improve the calculation of the radiative budget and the prediction of climate change over the TP in the atmospheric models.


2015 ◽  
Vol 153 ◽  
pp. 59-73 ◽  
Author(s):  
A.K. Georgoulias ◽  
K.A. Kourtidis ◽  
G. Alexandri ◽  
S. Rapsomanikis ◽  
A. Sanchez-Lorenzo

Author(s):  
T.M. Zabolotska ◽  
V.M. Shpyg ◽  
A.Yu. Tsila

The investigations of connection between the different meteorological processes, for example, the circulation indexes with the quantity of the total and lower cloudiness during 1961-2018 over Ukraine were made. The spatial distributions of the total and lower cloudiness were received for 73 years (1946-2018) at first. The quantity of cloudiness is diminished from west to east and with north to south. The declinations of the annual data of total and lower cloudiness from the historical (1961-1990) and the present (1981-2010) norms were calculated. The great variations were characterized for the lower cloudiness. The linear trends showed that the diminish of the lower cloudiness was on 90 % of the all territory, this changes were important on 70 % of the territory. The trends of the monthly variations were showed on the diminish of the lower cloudiness in during all year only on north, on other territory was the increasing in the separate months, frequently in January and September. The variations of the total cloudiness were insignificant, the increase or decrease were nearly in equal parts. North Atlantic Oscillation (NAO), Arctic Oscillation (AO), East-Atlantic Oscillation (EA), Scandinavian Oscillation (SCAND), Greenlandic Oscillation (GBI) and South Oscillation (El-Niño) were used for the investigation of relationship between the circulation indexes and cloud cover. It was shown that different circulation indexes have influence on climate of Northern Hemisphere and on Ukraine too. The relation with each other and their variations in period of global warming were showed. The quantity estimation of the total and lower cloudiness variations was made by the frequencies of clear, semi clear and overcast sky in the successive decades and by the relative variations of frequencies between decades (1961-1970 and 1971-1980; 1971-1980 and 1981-1990; 1981-1990 and 1991-2000; 1991-2000 and 2001-2010; 2001-2010 and 2011-2018). The parallel analyze of the variations of circulation was estimated in that time. The difference between the circulating processes during 1961-1970 and 1971-1980 contributed to a decrease in the relative frequency of the clear sky (on 5.4%) and a slight increase of the overcast sky (on 1.6%) by total cloud cover and a slight increase of the clear sky (on 0.8 %) and a decrease of the overcast sky (on 5.2%) by lower cloudiness. At the same time, the relative frequency of the semi-clear sky by lower cloudiness almost in three times increased in comparison to total cloudiness (on 10.2% and 3.8%, respectively). In the third decade of 1981-1990 the relative frequency of clear sky by lower cloudiness increased on 5.1% and did not change by total cloudiness (0%). During this decade the relative frequency of overcast sky decreased the most in the whole period under study: by total cloudiness on 6.4% and by lower cloudiness on 13.3%. At the same time, the relative frequency of semi-clear sky had largest increasing: on 22.4% for total cloudiness and 13% for lower cloudiness. Then, during 1991-2000, the frequency of clear sky decreased significantly both for total cloudiness (on 6.5%) and for lower cloudiness (on 3.1%). The frequency of overcast sky decreased also, but less significantly (on 1.3% and 2.3%, respectively), thereby the number of clouds of the middle and upper levels increased. From 2001 to 2010, the frequency of clear sky by total cloudiness and by lower cloudiness continued to decrease (on 5.3 and 3.2%, respectively), but the frequency of overcast sky increased (on 0.9 and 1.7%, respectively), thereby the number of clouds for all levels increased. During 2011-2018 the frequency of clear sky by total cloudiness increased (on 0.9%) and by lower cloudiness did not change. The frequency of overcast sky decreased on 3.6% (by total cloudiness) and on 0.7% (by lower cloudiness). The variations of the relative frequencies of the different state sky between the successive decades are agreed with the changes of the circulation indexes.


2013 ◽  
Vol 13 (10) ◽  
pp. 5227-5241 ◽  
Author(s):  
M. G. Tosca ◽  
J. T. Randerson ◽  
C. S. Zender

Abstract. Each year landscape fires across the globe emit black and organic carbon smoke particles that can last in the atmosphere for days to weeks. We characterized the climate response to these aerosols using an Earth system model. We used remote sensing observations of aerosol optical depth (AOD) and simulations from the Community Atmosphere Model, version 5 (CAM5) to optimize satellite-derived smoke emissions for high biomass burning regions. Subsequent global simulations using the adjusted fire emissions produced AODs that were in closer agreement with surface and space-based measurements. We then used CAM5, which included radiative aerosol effects, to evaluate the climate response to the fire-aerosol forcing. We conducted two 52 yr simulations, one with four sets of monthly cycling 1997–2009 fire emissions and one without. Fire emissions increased global mean annual AOD by 10% (+0.02) and decreased net all-sky surface radiation by 1% (1.3 W m−2). Elevated AODs reduced global surface temperatures by 0.13 ± 0.01 °C. Though global precipitation declined only slightly, patterns of precipitation changed, with large reductions near the Equator offset by smaller increases north and south of the intertropical convergence zone (ITCZ). A combination of increased tropospheric heating and reduced surface temperatures increased equatorial subsidence and weakened the Hadley circulation. As a consequence, precipitation decreased over tropical forests in South America, Africa and equatorial Asia. These results are consistent with the observed correlation between global temperatures and the strength of the Hadley circulation and studies linking tropospheric heating from black carbon aerosols with tropical expansion.


Author(s):  
Arnold Gruber ◽  
Bruno Rudolf ◽  
Mark M. Morrissey ◽  
Toshiyuki Kurino ◽  
John E. Janowiak ◽  
...  

2017 ◽  
Author(s):  
Jiming Li ◽  
Qiaoyi Lv ◽  
Bida Jian ◽  
Min Zhang ◽  
Chuanfeng Zhao ◽  
...  

Abstract. The accurate representation of cloud vertical overlap in atmospheric models is particularly significant for predicting the total cloud cover and for the calculations related to the radiative budget in these models. However, it has received too little attention due to the limited observation, especially over the Tibetan Plateau (TP). In this study, 4 years (2007–2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis product were analyzed to examine the seasonal and zonal variations of cloud overlap properties over the TP region, and evaluate the effect of atmospheric dynamics on cloud overlap. Unique characteristics of cloud overlap over the TP have been found. The statistical results show that the random overlap assumption slightly underestimates the total cloud coverage for discontinuous cloud layers over the TP, whereas the overlap parameter α for continuous cloud sharply decrease from maximum to random overlap with an increase of layer distance, eventually trending towards a minimal overlap (e.g., negative α values) as the cloud layer separation distance exceeds 1.5 km. Compared with the global averaged cloud overlap characteristics, the proportion of minimal overlap over the TP is significant high (about 41 %). It may be associated with the unique topographical forcing and thermos-dynamical environment of the TP. As a result, we propose a valid scheme for quantifying the degree of cloud overlap over the TP through a linear combination of the maximum and minimum overlap, and further parameterize decorrelation length scale L as a function of wind shear and atmospheric stability. Compared with other parameterizations, the new scheme reduces the bias between predicted and observed cloud covers. These results thus indicate that effects of wind shear and atmospheric stability on cloud overlap should both be taken into account in the parameterization of overlap parameter to improve the simulation of total cloud cover in models.


2018 ◽  
Author(s):  
Jorgen S. Frederiksen ◽  
Roger J. Francey

Abstract. The extreme El Niño of 2015 and 2016 coincided with record global warming and unprecedented strength of the Hadley circulation with significant impact on mean interhemispheric (IH) transport of CO2 and on the difference in CO2 concentration between Mauna Loa and Cape Grim (Cmlo-cgo). The relative roles of eddy transport and mean advective transport on IH CO2 annual differences from 1992 through to 2016 is explored. Eddy transport processes occur mainly in boreal winter-spring when Cmlo-cgo is large; an important component is due to Rossby wave generation by the Himalayas and propagation through the equatorial Pacific westerly duct generating and transmitting turbulent kinetic energy. Mean transport occurs mainly in boreal summer-autumn and varies with the strength of the Hadley circulation. The timing of annual changes in Cmlo-cgo is found to coincide well with dynamical indices that we introduce to characterize the transports. During the unrivalled 2009–2010 step in Cmlo-cgo indices of eddy and mean transport reinforce. In contrast for the 2015 to 2016 change in Cmlo-cgo the mean transport counteracts the eddy transport and the record strength of the Hadley circulation determines the annual IH CO2 difference. The interaction of increasing global warming and extreme El Niños may have important implications for altering the balance between eddy and mean IH CO2 transfer.


Sign in / Sign up

Export Citation Format

Share Document