scholarly journals Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006

2007 ◽  
Vol 7 (2) ◽  
pp. 511-534 ◽  
Author(s):  
A. Stohl ◽  
T. Berg ◽  
J. F. Burkhart ◽  
A. M. Fjǽraa ◽  
C. Forster ◽  
...  

Abstract. In spring 2006, the European Arctic was abnormally warm, setting new historical temperature records. During this warm period, smoke from agricultural fires in Eastern Europe intruded into the European Arctic and caused the most severe air pollution episodes ever recorded there. This paper confirms that biomass burning (BB) was indeed the source of the observed air pollution, studies the transport of the smoke into the Arctic, and presents an overview of the observations taken during the episode. Fire detections from the MODIS instruments aboard the Aqua and Terra satellites were used to estimate the BB emissions. The FLEXPART particle dispersion model was used to show that the smoke was transported to Spitsbergen and Iceland, which was confirmed by MODIS retrievals of the aerosol optical depth (AOD) and AIRS retrievals of carbon monoxide (CO) total columns. Concentrations of halocarbons, carbon dioxide and CO, as well as levoglucosan and potassium, measured at Zeppelin mountain near Ny Ålesund, were used to further corroborate the BB source of the smoke at Spitsbergen. The ozone (O3) and CO concentrations were the highest ever observed at the Zeppelin station, and gaseous elemental mercury was also elevated. A new O3 record was also set at a station on Iceland. The smoke was strongly absorbing – black carbon concentrations were the highest ever recorded at Zeppelin – and strongly perturbed the radiation transmission in the atmosphere: aerosol optical depths were the highest ever measured at Ny Ålesund. We furthermore discuss the aerosol chemical composition, obtained from filter samples, as well as the aerosol size distribution during the smoke event. Photographs show that the snow at a glacier on Spitsbergen became discolored during the episode and, thus, the snow albedo was reduced. Samples of this polluted snow contained strongly elevated levels of potassium, sulphate, nitrate and ammonium ions, thus relating the discoloration to the deposition of the smoke aerosols. This paper shows that, to date, BB has been underestimated as a source of aerosol and air pollution for the Arctic, relative to emissions from fossil fuel combustion. Given its significant impact on air quality over large spatial scales and on radiative processes, the practice of agricultural waste burning should be banned in the future.

2006 ◽  
Vol 6 (5) ◽  
pp. 9655-9722 ◽  
Author(s):  
A. Stohl ◽  
T. Berg ◽  
J. F. Burkhart ◽  
A. M. Fjæraa ◽  
C. Forster ◽  
...  

Abstract. In spring 2006, the European Arctic was abnormally warm, setting new historical temperature records. During this warm period, smoke from agricultural fires in Eastern Europe intruded into the European Arctic and caused the most severe air pollution episodes ever recorded there. This paper confirms that biomass burning (BB) was indeed the source of the observed air pollution, studies the transport of the smoke into the Arctic, and presents an overview of the observations taken during the episode. Fire detections from the MODIS instruments aboard the Aqua and Terra satellites were used to estimate the BB emissions. The FLEXPART particle dispersion model was used to show that the smoke was transported to Spitsbergen and Iceland, which was confirmed by MODIS retrievals of the aerosol optical depth (AOD) and AIRS retrievals of carbon monoxide (CO) total columns. Concentrations of halocarbons, carbon dioxide and CO, as well as levoglucosan and potassium, measured at Zeppelin mountain near Ny Ålesund, were used to further corroborate the BB source of the smoke at Spitsbergen. The ozone (O3) and CO concentrations were the highest ever observed at the Zeppelin station, and gaseous elemental mercury was also enhanced. A new O3 record was also set at a station on Iceland. The smoke was strongly absorbing – black carbon concentrations were the highest ever recorded at Zeppelin –, and strongly perturbed the radiation transmission in the atmosphere: aerosol optical depths were the highest ever measured at Ny Ålesund. We furthermore discuss the aerosol chemical composition, obtained from filter samples, as well as the aerosol size distribution during the smoke event. Photographs show that the snow at a glacier on Spitsbergen became discolored during the episode and, thus, the snow albedo was reduced. Samples of this polluted snow contained strongly enhanced levels of potassium, sulphate, nitrate and ammonium ions, thus relating the discoloration to the deposition of the smoke aerosols. This paper shows that, to date, BB has been underestimated as a source of aerosol and air pollution for the Arctic, relative to emissions from fossil fuel combustion. Given its significant impact on air quality over large spatial scales and on radiative processes, the practice of agricultural waste burning should be banned in the future.


2007 ◽  
Vol 7 (4) ◽  
pp. 9519-9559 ◽  
Author(s):  
C. Lund Myhre ◽  
C. Toledano ◽  
G. Myhre ◽  
K. Stebel ◽  
K. E. Yttri ◽  
...  

Abstract. In spring 2006 a special meteorological situation occurred in the European Arctic region giving record high levels of air pollution. The synoptic situation resulted in extensive transport of pollution predominantly from agricultural fires in Eastern Europe into the Arctic region and record high air-pollution levels were measured at the Zeppelin observatory at Ny-Ålesund (78°54' N, 11°53' E) in the period from 25 April to 12 May. In the present study we investigate the optical properties of the aerosols from this extreme event and we estimate the radiative forcing of this episode. We examine the aerosol optical properties from the source region and into the European Arctic and explore the evolution of the episode and the changes in the optical properties. A number of sites in Eastern Europe, Northern Scandinavia and Svalbard are included in the study. In addition to AOD measurements, we explored lidar measurements from Minsk, ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research at Andenes) and Ny-Ålesund. For the AERONET sites included (Minsk, Toravere, Hornsund) we have further studied the evolution of the aerosol size. Importantly, at Svalbard it is consistency between the AERONET measurements and calculations of single scattering albedo based on aerosol chemical composition. We have found strong agreement between the satellite daily MODIS AOD and the ground-based AOD observations. This agreement is crucial for the radiative forcing calculations. We calculate a strong negative radiative forcing for the most polluted days employing the analysed ground based data, MODIS AOD and a multi-stream model for radiative transfer of solar radiation.


2007 ◽  
Vol 7 (1) ◽  
pp. 2275-2324 ◽  
Author(s):  
R. Treffeisen ◽  
P. Turnved ◽  
J. Ström ◽  
A. Herber ◽  
J. Bareiss ◽  
...  

Abstract. In early May 2006 a record high air pollution event was observed at Ny-Ålesund, Spitsbergen. An atypical weather pattern established a pathway for the rapid transport of biomass burning aerosols from agricultural fires in Eastern Europe to the Arctic. Atmospheric stability was such that the smoke was constrained to low levels, within 2 km of the surface during the transport. A description of this smoke event in terms of transport and main aerosol characteristics can be found in Stohl et al. (2007). This study puts emphasis on the radiative effect of the smoke. The aerosol size distribution was characterized as having an accumulation mode centered at 165–185 nm and almost 1.6 for geometric standard deviation of the mode. Nucleation and small Aitken mode particles were almost completely suppressed within the smoke plume measured at Ny-Ålesund. Chemical and microphysical aerosol information obtained at Mt. Zeppelin (474 m.a.s.l) was used to derive input parameters for a one-dimensional radiation transfer model to explore the radiative effects of the smoke. The daily mean heating rate calculated on 2 May 2006 for the average size distribution and measured chemical composition reached 0.55 K day−1 at 0.5 km altitude for the assumed external mixture of the aerosols but showing much higher heating rates for an internal mixture (1.7 K day−1). In comparison a case study for March 2000 showed that the local climatic effects due to Arctic haze, using a regional climate model, HIRHAM, amounts to a maximum of 0.3 K day−1 of heating at 2 km altitude (Treffeisen et al., 2005).


2012 ◽  
Vol 12 (7) ◽  
pp. 3241-3251 ◽  
Author(s):  
K. A. Pfaffhuber ◽  
T. Berg ◽  
D. Hirdman ◽  
A. Stohl

Abstract. Long term atmospheric mercury measurements in the Southern Hemisphere are scarce and in Antarctica completely absent. Recent studies have shown that the Antarctic continent plays an important role in the global mercury cycle. Therefore, long term measurements of gaseous elemental mercury (GEM) were initiated at the Norwegian Antarctic Research Station, Troll (TRS) in order to improve our understanding of atmospheric transport, transformation and removal processes of GEM. GEM measurements started in February 2007 and are still ongoing, and this paper presents results from the first four years. The mean annual GEM concentration of 0.93 ± 0.19 ng m−3 is in good agreement with other recent southern-hemispheric measurements. Measurements of GEM were combined with the output of the Lagrangian particle dispersion model FLEXPART, for a statistical analysis of GEM source and sink regions. It was found that the ocean is a source of GEM to TRS year round, especially in summer and fall. On time scales of up to 20 days, there is little direct transport of GEM to TRS from Southern Hemisphere continents, but sources there are important for determining the overall GEM load in the Southern Hemisphere and for the mean GEM concentration at TRS. Further, the sea ice and marginal ice zones are GEM sinks in spring as also seen in the Arctic, but the Antarctic oceanic sink seems weaker. Contrary to the Arctic, a strong summer time GEM sink was found, when air originates from the Antarctic plateau, which shows that the summertime removal mechanism of GEM is completely different and is caused by other chemical processes than the springtime atmospheric mercury depletion events. The results were corroborated by an analysis of ozone source and sink regions.


2007 ◽  
Vol 7 (3) ◽  
pp. 913-937 ◽  
Author(s):  
A. Stohl ◽  
C. Forster ◽  
H. Huntrieser ◽  
H. Mannstein ◽  
W. W. McMillan ◽  
...  

Abstract. An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24–25 March 2006. According to the model, the plume was exported from Southeast Asia six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO) from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy) and ozone (O3) measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17–34 ppbv on average (maximum 60 ppbv) and O3 by 2–9 ppbv (maximum 22 ppbv). Positive correlations existed between these species, and a ΔO3/ΔCO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface of the transported larger particles. Super-micron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters 0.25–0.70 Mm−1), as was the fraction of non-volatile Aitken particles. This indicates that black carbon (BC) was an important aerosol component. During the flight on 25 March, which took place on the rear of a trough located over Europe, a mixture of Asian pollution and stratospheric air was found. Asian pollution was mixing into the lower stratosphere, and stratospheric air was mixing into the pollution plume in the troposphere. Turbulence was encountered by the aircraft in the mixing regions, where the thermal stability was low and Richardson numbers were below 0.2. The result of the mixing can clearly be seen in the trace gas data, which are following mixing lines in correlation plots. This mixing with stratospheric air is likely very typical of Asian air pollution, which is often lifted to the upper troposphere and, thus, transported in the vicinity of stratospheric air.


2017 ◽  
Vol 17 (14) ◽  
pp. 8757-8770 ◽  
Author(s):  
Roghayeh Ghahremaninezhad ◽  
Ann-Lise Norman ◽  
Betty Croft ◽  
Randall V. Martin ◽  
Jeffrey R. Pierce ◽  
...  

Abstract. Vertical distributions of atmospheric dimethyl sulfide (DMS(g)) were sampled aboard the research aircraft Polar 6 near Lancaster Sound, Nunavut, Canada, in July 2014 and on pan-Arctic flights in April 2015 that started from Longyearbyen, Spitzbergen, and passed through Alert and Eureka, Nunavut, and Inuvik, Northwest Territories. Larger mean DMS(g) mixing ratios were present during April 2015 (campaign mean of 116  ±  8 pptv) compared to July 2014 (campaign mean of 20  ±  6 pptv). During July 2014, the largest mixing ratios were found near the surface over the ice edge and open water. DMS(g) mixing ratios decreased with altitude up to about 3 km. During April 2015, profiles of DMS(g) were more uniform with height and some profiles showed an increase with altitude. DMS reached as high as 100 pptv near 2500 m. Relative to the observation averages, GEOS-Chem (www.geos-chem.org) chemical transport model simulations were higher during July and lower during April. Based on the simulations, more than 90 % of the July DMS(g) below 2 km and more than 90 % of the April DMS(g) originated from Arctic seawater (north of 66° N). During April, 60 % of the DMS(g), between 500 and 3000 m originated from Arctic seawater. During July 2014, FLEXPART (FLEXible PARTicle dispersion model) simulations locate the sampled air mass over Baffin Bay and the Canadian Arctic Archipelago 4 days back from the observations. During April 2015, the locations of the air masses 4 days back from sampling were varied: Baffin Bay/Canadian Archipelago, the Arctic Ocean, Greenland and the Pacific Ocean. Our results highlight the role of open water below the flight as the source of DMS(g) during July 2014 and the influence of long-range transport (LRT) of DMS(g) from further afield in the Arctic above 2500 m during April 2015.


2015 ◽  
Vol 15 (16) ◽  
pp. 9413-9433 ◽  
Author(s):  
S. Eckhardt ◽  
B. Quennehen ◽  
D. J. L. Olivié ◽  
T. K. Berntsen ◽  
R. Cherian ◽  
...  

Abstract. The concentrations of sulfate, black carbon (BC) and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze) and low values in summer. Models have long been struggling to capture this seasonality and especially the high concentrations associated with Arctic Haze. In this study, we evaluate sulfate and BC concentrations from eleven different models driven with the same emission inventory against a comprehensive pan-Arctic measurement data set over a time period of 2 years (2008–2009). The set of models consisted of one Lagrangian particle dispersion model, four chemistry transport models (CTMs), one atmospheric chemistry-weather forecast model and five chemistry climate models (CCMs), of which two were nudged to meteorological analyses and three were running freely. The measurement data set consisted of surface measurements of equivalent BC (eBC) from five stations (Alert, Barrow, Pallas, Tiksi and Zeppelin), elemental carbon (EC) from Station Nord and Alert and aircraft measurements of refractory BC (rBC) from six different campaigns. We find that the models generally captured the measured eBC or rBC and sulfate concentrations quite well, compared to previous comparisons. However, the aerosol seasonality at the surface is still too weak in most models. Concentrations of eBC and sulfate averaged over three surface sites are underestimated in winter/spring in all but one model (model means for January–March underestimated by 59 and 37 % for BC and sulfate, respectively), whereas concentrations in summer are overestimated in the model mean (by 88 and 44 % for July–September), but with overestimates as well as underestimates present in individual models. The most pronounced eBC underestimates, not included in the above multi-site average, are found for the station Tiksi in Siberia where the measured annual mean eBC concentration is 3 times higher than the average annual mean for all other stations. This suggests an underestimate of BC sources in Russia in the emission inventory used. Based on the campaign data, biomass burning was identified as another cause of the modeling problems. For sulfate, very large differences were found in the model ensemble, with an apparent anti-correlation between modeled surface concentrations and total atmospheric columns. There is a strong correlation between observed sulfate and eBC concentrations with consistent sulfate/eBC slopes found for all Arctic stations, indicating that the sources contributing to sulfate and BC are similar throughout the Arctic and that the aerosols are internally mixed and undergo similar removal. However, only three models reproduced this finding, whereas sulfate and BC are weakly correlated in the other models. Overall, no class of models (e.g., CTMs, CCMs) performed better than the others and differences are independent of model resolution.


2009 ◽  
Vol 9 (5) ◽  
pp. 18417-18478 ◽  
Author(s):  
H. E. Fuelberg ◽  
D. L. Harrigan ◽  
W. Sessions

Abstract. The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was a multi-aircraft project whose major objective was to investigate the factors driving changes in the Arctic's atmospheric composition and climate. It was conducted during April and June–July 2008. The summer ARCTAS deployment was preceded by a week of flights over and around California to address state issues of air quality and climate forcing. This paper focuses on meteorological conditions during the ARCTAS Spring and Summer campaigns. We examine mission averaged large-scale flow patterns at the surface, 500 hPa, and 300 hPa and determine their departures from climatology. Results from runs of the Weather Research and Forecasting (WRF) model are used to describe meteorological conditions on individual days. Our WRF configuration included a nested grid approach that provided horizontal spacing as small as 5 km. Trajectories calculated from the WRF output are used to determine transport pathways to the Arctic, including their origins and the altitudes at which they reach 70° N. We also present backward trajectories from selected legs of individual ARCTAS flights. Finally, the FLEXPART particle dispersion model, with the high resolution WRF data as input, is used to determine the paths of anthropogenic and biomass burning-derived CO. Results show that there was frequent and widespread transport to the Arctic during both phases of ARCTAS and that the three ARCTAS aircraft sampled air having a multitude of origins, following a myriad of paths, and experiencing many types of meteorological conditions.


2021 ◽  
Author(s):  
Jingwei Yun ◽  
Erin Evoy ◽  
Soleil Worthy ◽  
Melody Fraser ◽  
Daniel Veber ◽  
...  

<p>Ice nucleating particles (INPs) can initiate ice formation in clouds, which has a large impact on the hydrological cycle and radiative budget of the Earth. Constraints on the concentration and composition of INPs are needed to predict ice formation in clouds and hence the climate. Despite previous INP measurements in the Arctic, our understanding of the concentrations, composition, and sources of Arctic INPs is insufficient. Here we report daily concentrations of INPs at Alert, a ground site in the Canadian High Arctic, during October and November of 2018. The contributions of mineral dust and proteinaceous particles to the total INP population were evaluated by testing the responses of the samples to heat and ammonium treatments. Possible source locations of the most effective INPs were investigated using back-trajectory simulations with a Lagrangian particle dispersion model. The results show that the INP concentrations in October were higher than that in November. Combining our results with previous INP measurements at Alert, a seasonal trend was observed for the INP concentrations at -18 °C and -22 °C, with a higher concentration in the late spring, summer and early fall, and a lower concentration in the early spring, late fall, and winter. For the October samples, proteinaceous INPs were detected at T > -21 °C with a fraction of 60% to 100% and mineral dust INPs were detected at T < -21 °C. For the November samples, proteinaceous INPs were only detected at T > -16 °C with a fraction of 88% to 100% and mineral dust INPs were detected at T < -20 °C. The most effective INPs were possibly from South China and California based on 20-day backward simulations using the FLEXible PARTicle dispersion model and the correlations between INP concentrations and Al, , Na<sup>+</sup>, and Cl<sup>-</sup> measured at the site.  </p>


2006 ◽  
Vol 6 (6) ◽  
pp. 12611-12670
Author(s):  
A. Stohl ◽  
C. Forster ◽  
H. Huntrieser ◽  
H. Mannstein ◽  
W. W. McMillan ◽  
...  

Abstract. An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24–25 March 2006. According to the model, the plume was exported from Southeast Asia only six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO) from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was indeed found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy) and ozone (O3) measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17–34 ppbv on average (maximum 60 ppbv) and O3 by 2–9 ppbv (maximum 22 ppbv). Positive correlations existed between these species, and a ΔO3/ΔCO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface due to the transported larger particles. Super-micron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters 0.25–0.70 Mm−1), as was the fraction of non-volatile Aitken particles. This indicates that black carbon (BC) was an important aerosol component. During the flight on 25 March, which took place on the backside of a trough located over Europe, a mixture of Asian pollution and stratospheric air was found. Asian pollution was mixing into the lower stratosphere, and stratospheric air was mixing into the pollution plume in the troposphere. Turbulence was encountered by the aircraft in the mixing regions, where the thermal stability was low and Richardson numbers were below 0.2. The result of the mixing can clearly be seen in the trace gas data, which are following mixing lines in correlation plots. This mixing with stratospheric air is likely very typical of Asian air pollution, which is often lifted to the upper troposphere and, thus, transported in the vicinity of stratospheric air.


Sign in / Sign up

Export Citation Format

Share Document