scholarly journals Analysis of Visible/SWIR surface reflectance ratios for aerosol retrievals from satellite in Mexico City urban area

2007 ◽  
Vol 7 (20) ◽  
pp. 5467-5477 ◽  
Author(s):  
A. D. de Almeida Castanho ◽  
R. Prinn ◽  
V. Martins ◽  
M. Herold ◽  
C. Ichoku ◽  
...  

Abstract. The surface reflectance ratio between the visible (VIS) and shortwave infrared (SWIR) radiation is an important quantity for the retrieval of the aerosol optical depth (τa) from the MODIS sensor data. Based on empirically determined VIS/SWIR ratios, MODIS τa retrieval uses the surface reflectance in the SWIR band (2.1 µm), where the interaction between solar radiation and the aerosol layer is small, to predict the visible reflectances in the blue (0.47 µm) and red (0.66 µm) bands. Therefore, accurate knowledge of the VIS/SWIR ratio is essential for achieving accurate retrieval of aerosol optical depth from MODIS. We analyzed the surface reflectance over some distinct surface covers in and around the Mexico City metropolitan area (MCMA) using MODIS radiances at 0.66 µm and 2.1 µm. The analysis was performed at 1.5 km×1.5 km spatial resolution. Also, ground-based AERONET sun-photometer data acquired in Mexico City from 2002 to 2005 were analyzed for aerosol depth and other aerosol optical properties. In addition, a network of hand-held sun-photometers deployed in Mexico City, as part of the MCMA-2006 Study during the MILAGRO Campaign, provided an unprecedented measurement of τa in 5 different sites well distributed in the city. We found that the average RED/SWIR ratio representative of the urbanized sites analyzed is 0.73±0.06 for scattering angles <140° and goes up to 0.77±0.06 for higher ones. The average ratio for non-urban sites was significantly lower (approximately 0.55). In fact, this ratio strongly depends on differences in urbanization levels (i.e. relative urban to vegetation proportions and types of surface materials). The aerosol optical depth retrieved from MODIS radiances at a spatial resolution of 1.5 km×1.5 km and averaged within 10×10 km boxes were compared with collocated 1-h τa averaged from sun-photometer measurements. The use of the new RED/SWIR ratio of 0.73 in the MODIS retrieval over Mexico City led to a significant improvement in the agreement between the MODIS and sun-photometer AOD results; with the slope, offset, and the correlation coefficient of the linear regression changing from (τaMODIS=0.91τa sun-photometer+0.33, R2=0.66) to (τaMODIS=0.96 τa sun-photometer−0.006, R2=0.87). Indeed, an underestimation of this ratio in urban areas lead to a significant overestimation of the AOD retrieved from satellite. Therefore, we strongly encourage similar analyses in other urban areas to enhance the development of a parameterization of the surface ratios accounting for urban heterogeneities.

2007 ◽  
Vol 7 (3) ◽  
pp. 8113-8139 ◽  
Author(s):  
A. D. de Almeida Castanho ◽  
R. Prinn ◽  
V. Martins ◽  
M. Herold ◽  
C. Ichoku ◽  
...  

Abstract. The surface reflectance ratio between the visible (VIS) and shortwave infrared (SWIR) radiation is an important quantity for the retrieval of the aerosol optical depth (τa) from the MODIS sensor data. Based on empirically determined VIS/SWIR ratios, MODIS τa retrieval uses the surface reflectance in the SWIR band (2.1 μm), where the interaction between solar radiation and the aerosol layer is small, to predict the visible reflectances in the blue (0.47 μm) and red (0.66 μm) bands. Therefore, accurate knowledge of the VIS/SWIR ratio is essential for achieving accurate retrieval of aerosol optical depth from MODIS. The heterogeneity of the surface cover in an urban environment increases the uncertainties in the estimation of the surface reflectance and, consequently, τa. We analyzed the surface reflectance over some distinct surface covers in and around the Mexico City metropolitan area (MCMA) using MODIS radiances at 0.66 μm and 2.1 μm. The analysis was performed at 1.5 km×1.5 km spatial resolution. Also, ground-based AERONET sun-photometer data acquired in Mexico City from 2002 to 2005 were analyzed for aerosol optical thickness and other aerosol optical properties. In addition, a network of hand-held sun-photometers deployed in Mexico City, as part of the MCMA-2006 Study during the MILAGRO Campaign, provided an unprecedented measurement of τa in 5 different sites well distributed in the city. We found that the average RED/SWIR ratio representative of the urbanized sites analyzed is 0.73±0.06. This average ratio was significantly different for non-urban sites, which was approximately 0.55. The aerosol optical thickness retrieved from MODIS radiances at a spatial resolution of 1.5 km×1.5 km and averaged within 10 x 10 km boxes were compared with collocated 1-h τa averaged from sun-photometer measurements. The use of the new RED/SWIR ratio of 0.73 in the MODIS retrieval led to a significant improvement in the agreement between the MODIS and sun-photometer results; with the slope, offset, and the correlation coefficient of the linear regression changing from (τaMODIS = 0.91 τa sun-photometer + 0.33 ,R2=0.66) to (τaMODIS = 0.96 τa sun-photometer −0.006, R2=0.87).


2022 ◽  
Vol 14 (2) ◽  
pp. 373
Author(s):  
Muhammad Bilal ◽  
Alaa Mhawish ◽  
Md. Arfan Ali ◽  
Janet E. Nichol ◽  
Gerrit de Leeuw ◽  
...  

The SEMARA approach, an integration of the Simplified and Robust Surface Reflectance Estimation (SREM) and Simplified Aerosol Retrieval Algorithm (SARA) methods, was used to retrieve aerosol optical depth (AOD) at 550 nm from a Landsat 8 Operational Land Imager (OLI) at 30 m spatial resolution, a Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) at 500 m resolution, and a Visible Infrared Imaging Radiometer Suite (VIIRS) at 750 m resolution over bright urban surfaces in Beijing. The SEMARA approach coupled (1) the SREM method that is used to estimate the surface reflectance, which does not require information about water vapor, ozone, and aerosol, and (2) the SARA algorithm, which uses the surface reflectance estimated by SREM and AOD measurements obtained from the Aerosol Robotic NETwork (AERONET) site (or other high-quality AOD) as the input to estimate AOD without prior information on the aerosol optical and microphysical properties usually obtained from a look-up table constructed from long-term AERONET data. In the present study, AOD measurements were obtained from the Beijing AERONET site. The SEMARA AOD retrievals were validated against AOD measurements obtained from two other AERONET sites located at urban locations in Beijing, i.e., Beijing_RADI and Beijing_CAMS, over bright surfaces. The accuracy and uncertainties/errors in the AOD retrievals were assessed using Pearson’s correlation coefficient (r), root mean squared error (RMSE), relative mean bias (RMB), and expected error (EE = ± 0.05 ± 20%). EE is the envelope encompassing both absolute and relative errors and contains 68% (±1σ) of the good quality retrievals based on global validation. Here, the EE of the MODIS Dark Target algorithm at 3 km resolution is used to report the good quality SEMARA AOD retrievals. The validation results show that AOD from SEMARA correlates well with AERONET AOD measurements with high correlation coefficients (r) of 0.988, 0.980, and 0.981; small RMSE of 0.08, 0.09, and 0.08; and small RMB of 4.33%, 1.28%, and -0.54%. High percentages of retrievals, i.e., 85.71%, 91.53%, and 90.16%, were within the EE for Landsat 8 OLI, MODIS, and VIIRS, respectively. The results suggest that the SEMARA approach is capable of retrieving AOD over urban areas with high accuracy and small errors using high to medium spatial resolution satellite remote sensing data. This approach can be used for aerosol monitoring over bright urban surfaces such as in Beijing, which is frequently affected by severe dust storms and haze pollution, to evaluate their effects on public health.


2020 ◽  
Vol 12 (18) ◽  
pp. 3099
Author(s):  
Jean-François Léon ◽  
Nadège Martiny ◽  
Sébastien Merlet

Due to a limited number of monitoring stations in Western Africa, the impact of mineral dust on PM10 surface concentrations is still poorly known. We propose a new method to retrieve PM10 dust surface concentrations from sun photometer aerosol optical depth (AOD) and CALIPSO/CALIOP Level 2 aerosol layer products. The method is based on a multi linear regression model that is trained using co-located PM10, AERONET and CALIOP observations at 3 different locations in the Sahel. In addition to the sun photometer AOD, the regression model uses the CALIOP-derived base and top altitude of the lowermost dust layer, its AOD, the columnar total and columnar dust AOD. Due to the low revisit period of the CALIPSO satellite, the monthly mean annual cycles of the parameters are used as predictor variables rather than instantaneous observations. The regression model improves the correlation coefficient between monthly mean PM10 and AOD from 0.15 (AERONET AOD only) to 0.75 (AERONET AOD and CALIOP parameters). The respective high and low PM10 concentration during the winter dry season and summer season are well produced. Days with surface PM10 above 100 μg/m3 are better identified when using the CALIOP parameters in the multi linear regression model. The number of true positives (actual and predicted concentrations above the threshold) is increased and leads to an improvement in the classification sensitivity (recall) by a factor 1.8. Our methodology can be extrapolated to the whole Sahel area provided that satellite derived AOD maps are used in order to create a new dataset on population exposure to dust events in this area.


2021 ◽  
Vol 13 (18) ◽  
pp. 3752
Author(s):  
Zhendong Sun ◽  
Jing Wei ◽  
Ning Zhang ◽  
Yulong He ◽  
Yu Sun ◽  
...  

Gaofen 4 (GF-4) is a geostationary satellite, with a panchromatic and multispectral sensor (PMS) onboard, and has great potential in observing atmospheric aerosols. In this study, we developed an aerosol optical depth (AOD) retrieval algorithm for the GF-4 satellite. AOD retrieval was realized based on the pre-calculated surface reflectance database and 6S radiative transfer model. We customized the unique aerosol type according to the long time series aerosol parameters provided by the Aerosol Robotic Network (AERONET) site. The solar zenith angle, relative azimuth angle, and satellite zenith angle of the GF-4 panchromatic multispectral sensor image were calculated pixel-by-pixel. Our 1 km AOD retrievals were validated against AERONET Version 3 measurements and compared with MOD04 C6 AOD products at different resolutions. The results showed that our GF-4 AOD algorithm had a good robustness in both bright urban areas and dark rural areas. A total of 71.33% of the AOD retrievals fell within the expected errors of ±(0.05% + 20%); root-mean-square error (RMSE) and mean absolute error (MAE) were 0.922 and 0.122, respectively. The accuracy of GF-4 AOD in rural areas was slightly higher than that in urban areas. In comparison with MOD04 products, the accuracy of GF-4 AOD was much higher than that of MOD04 3 km and 10 km dark target AOD, but slightly worse than that of MOD04 10 km deep blue AOD. For different values of land surface reflectance (LSR), the accuracy of GF-4 AOD gradually deteriorated with an increase in the LSR. These results have theoretical and practical significance for aerosol research and can improve retrieval algorithms using the GF-4 satellite.


2021 ◽  
Vol 13 (20) ◽  
pp. 4140
Author(s):  
Hao Lin ◽  
Siwei Li ◽  
Jia Xing ◽  
Jie Yang ◽  
Qingxin Wang ◽  
...  

Recent studies have shown that the high-resolution satellite Landsat-8 has the capability to retrieve aerosol optical depth (AOD) over urban areas at a 30 m spatial resolution. However, its long revisiting time and narrow swath limit the coverage and frequency of the high resolution AOD observations. With the increasing number of Earth observation satellites launched in recent years, combining the observations of multiple satellites can provide higher temporal-spatial coverage. In this study, a fusing retrieval algorithm is developed to retrieve high-resolution (30 m) aerosols over urban areas from Landsat-8 and Sentinel-2 A/B satellite measurements. The new fusing algorithm was tested and evaluated over Beijing city and its surrounding area in China. The validation results show that the retrieved AODs show a high level of agreement with the local urban ground-based Aerosol Robotic Network (AERONET) AOD measurements, with an overall high coefficient of determination (R2) of 0.905 and small root mean square error (RMSE) of 0.119. Compared with the operational AOD products processed by the Landsat-8 Surface Reflectance Code (LaSRC-AOD), Sentinel Radiative Transfer Atmospheric Correction code (SEN2COR-AOD), and MODIS Collection 6 AOD (MOD04) products, the AOD retrieved from the new fusing algorithm based on the Landsat-8 and Sentinel-2 A/B observations exhibits an overall higher accuracy and better performance in spatial continuity over the complex urban area. Moreover, the temporal resolution of the high spatial resolution AOD observations was greatly improved (from 16/10/10 days to about two to four days over globe land in theory under cloud-free conditions) and the daily spatial coverage was increased by two to three times compared to the coverage gained using a single sensor.


2020 ◽  
Author(s):  
Yong Xue

&lt;p&gt;Aerosol optical depth (AOD) is an important factor to estimate the effect of aerosol on light, and an accurate retrieval of it can make great contribution to monitor atmosphere. Therefore, retrieval of AOD has been a frontier topic and attracted much attention from researchers at home and abroad. However, the spatial resolution of AOD, based on Moderate-resolution Imaging Spectroradiometer (MODIS), is low, and hard to meet the needs of regional air quality fine monitoring. In 2018, China launched Gaofen-6 satellite, which set up a network with Gaofen-1 enabling two-day revisited observations in China's land area, improving the scale and timeliness of remote sensing data acquisition and making up for the shortcomings of lacking multi-spectral satellite with medium and high spatial resolution. Along with advancement of the Earth Observation System and the launch of high-resolution satellites, it is of profound significance to give full play to the active role of high-scoring satellites, in monitoring atmospheric environmental elements such as atmospheric aerosols and particulate matter concentrations, and achieve high-resolution retrieval of AOD through Gaofen satellites.&lt;/p&gt;&lt;p&gt;In this paper the data of Gaofen-6 and Gaofen-1 was used to retrieve the AOD. based on the Synergetic Retrieval of Aerosol Properties (SRAP) algorithm. This algorithm can retrieve the surface reflectance and AOD synchronously through constructing a closed equation based on double star observations. It can be applied to various types of surface reflectance which extends the coverage of the retrieval of AOD inversion effectively. Experimental data includes the satellite data of New South Wales and eastern Queensland on November 21, 2019, which have been suffered from unprecedented large-scale forest fires for over 2 months. The retrieval of AOD during the time with the satellite data is benefit for the prevention and monitoring of forest fire. The experimental results are compared with the AERONET ground observation data for preliminary validation. The correlation coefficient is about 0.7. The experimental results show that the method have higher accuracy, and further validation work is continuing.&lt;/p&gt;


2013 ◽  
Vol 726-731 ◽  
pp. 4631-4635 ◽  
Author(s):  
Chang Kui Sun ◽  
Lin Sun ◽  
Dan Li ◽  
Zheng Zhao ◽  
Kun Yu

For the lacks of a shortwave infrared (SWIR) band, aerosol optical depth (AOD) retrieval by HJ-1 A/B CCD datasets is limited obviously. This article simulated the relationships of surface reflectance between HJ-1 CCD blue band and MODIS SWIR channel using typical object spectra from ASTER spectral library. A new surface reflectance determining model at HJ-1 CCD blue band was constructed by introducing MODIS SWIR channel as support, and was used in HJ-1 A/B CCD aerosol optical depth retrieval. The validation using AERONET ground measurements indicated that the proposed aerosol retrieval method has preferable accuracy and stability.


2019 ◽  
Vol 18 (32) ◽  
pp. 4-17
Author(s):  
Le Thi Le ◽  
Lin Tang-Huang ◽  
Canh Van Le ◽  
Lan Thi Pham ◽  
Ha Thi Thu Le ◽  
...  

Aerosol optical depth (AOD) can be retrieved accurately with sequential ground-based measurements of direct and diffuse solar radiance. However, spatial coverage and location frequency cause certain limitations. Hence, satellite image data are a proper tool for obtaining aerosol optical depth products with more spatial information and patterns of aerosol distribution. Currently, aerosol remote sensing may enhance our understanding of the optimal approach to AOD retrieval over urban and rural areas, and how it differs due to the characteristics of surface reflectivity. The article deals with the concepts of contrast reduction, and dark target approaches are examined using Landsat imaging and the observation of a sun photometer for integrating aerosol optical depth distribution over the city of Taipei in Taiwan. For areas with bright surfaces, such as urban areas, the above concepts were applied using the dispersion coefficient method with a sun photometer, in order to reduce errors considerably in the product. In contrast, a dark target algorithm with a relationship of surface reflectance between the blue (0.49 μm), red (0.66 μm), and infrared (2.1 μm) spectral bands is suitable for moist soils and vegetation areas. The retrieval of AOD spatial distribution is compared with MODIS AOD products and AERONET to verify the accuracy of the results. The RMSE ranged from 0.2 to 0.4, and about 50% of the data were within expected error margins (EE=± (0.05+0.15 AODsunphotometer).


2016 ◽  
Vol 9 (7) ◽  
pp. 3293-3308 ◽  
Author(s):  
Pawan Gupta ◽  
Robert C. Levy ◽  
Shana Mattoo ◽  
Lorraine A. Remer ◽  
Leigh A. Munchak

Abstract. The MODerate resolution Imaging Spectroradiometer (MODIS) instruments, aboard the two Earth Observing System (EOS) satellites Terra and Aqua, provide aerosol information with nearly daily global coverage at moderate spatial resolution (10 and 3 km). Almost 15 years of aerosol data records are now available from MODIS that can be used for various climate and air-quality applications. However, the application of MODIS aerosol products for air-quality concerns is limited by a reduction in retrieval accuracy over urban surfaces. This is largely because the urban surface reflectance behaves differently than that assumed for natural surfaces. In this study, we address the inaccuracies produced by the MODIS Dark Target (MDT) algorithm aerosol optical depth (AOD) retrievals over urban areas and suggest improvements by modifying the surface reflectance scheme in the algorithm. By integrating MODIS Land Surface Reflectance and Land Cover Type information into the aerosol surface parameterization scheme for urban areas, much of the issues associated with the standard algorithm have been mitigated for our test region, the continental United States (CONUS). The new surface scheme takes into account the change in underlying surface type and is only applied for MODIS pixels with urban percentage (UP) larger than 20 %. Over the urban areas where the new scheme has been applied (UP > 20 %), the number of AOD retrievals falling within expected error (EE %) has increased by 20 %, and the strong positive bias against ground-based sun photometry has been eliminated. However, we note that the new retrieval introduces a small negative bias for AOD values less than 0.1 due to the ultra-sensitivity of the AOD retrieval to the surface parameterization under low atmospheric aerosol loadings. Global application of the new urban surface parameterization appears promising, but further research and analysis are required before global implementation.


2016 ◽  
Author(s):  
P. Gupta ◽  
R. C. Levy ◽  
S. Mattoo ◽  
L. A. Remer ◽  
L. A. Munchak

Abstract. The MODerate resolution Imaging Spectroradiometer (MODIS) instruments, aboard two Earth Observing Satellites (EOS) Terra and Aqua, provide aerosol information with nearly daily global coverage at moderate spatial resolution (10 km and 3 km). Almost 15 years of aerosol data records are now available from MODIS that can be used for various climate and air quality applications. However, the application of MODIS aerosol products for air quality concerns is limited by a reduction in retrieval accuracy over urban surfaces. Here, in this study, we address the inaccuracies produced by the MODIS dark target algorithm (MDT) Aerosol Optical Depth (AOD) retrievals over urban areas and suggest improvements by modifying the surface reflectance scheme in the algorithm. By integrating MODIS land surface reflectance and land cover type information into the aerosol surface parameterization scheme for urban areas, much of the issues associated with the standard algorithm have been mitigated for our test region, the Continental United States (CONUS). The new surface scheme takes into account the change in under lying surface type and is only applied for MODIS pixels with urban percentage (UP) larger than 20%. Over the urban areas where the new scheme has been applied (UP > 20 %), the number of AOD retrievals falling within expected error (EE %) has increased by 20 %, and the strong positive bias against ground-based sunphotometry has been eliminated. However, we note that the new retrieval introduces a small negative bias for AOD values less than 0.1, due to ultra sensitivity of the AOD retrieval to the surface parameterization under low atmospheric aerosol loadings. Global application of the new urban surface parameterization appears promising, but further research and analysis are required before global implementation.


Sign in / Sign up

Export Citation Format

Share Document