scholarly journals Global distribution of mean age of stratospheric air from MIPAS SF<sub>6</sub> measurements

2008 ◽  
Vol 8 (3) ◽  
pp. 677-695 ◽  
Author(s):  
G. P. Stiller ◽  
T. von Clarmann ◽  
M. Höpfner ◽  
N. Glatthor ◽  
U. Grabowski ◽  
...  

Abstract. Global distributions of profiles of sulphur hexafluoride (SF6) have been retrieved from limb emission spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat covering the period September 2002 to March 2004. Individual SF6 profiles have a precision of 0.5 pptv below 25 km altitude and a vertical resolution of 4–6 km up to 35 km altitude. These data have been validated versus in situ observations obtained during balloon flights of a cryogenic whole-air sampler. For the tropical troposphere a trend of 0.230±0.008 pptv/yr has been derived from the MIPAS data, which is in excellent agreement with the trend from ground-based flask and in situ measurements from the National Oceanic and Atmospheric Administration Earth System Research Laboratory, Global Monitoring Division. For the data set currently available, based on at least three days of data per month, monthly 5° latitude mean values have a 1σ standard error of 1%. From the global SF6 distributions, global daily and monthly distributions of the apparent mean age of air are inferred by application of the tropical tropospheric trend derived from MIPAS data. The inferred mean ages are provided for the full globe up to 90° N/S, and have a 1σ standard error of 0.25 yr. They range between 0 (near the tropical tropopause) and 7 years (except for situations of mesospheric intrusions) and agree well with earlier observations. The seasonal variation of the mean age of stratospheric air indicates episodes of severe intrusion of mesospheric air during each Northern and Southern polar winter observed, long-lasting remnants of old, subsided polar winter air over the spring and summer poles, and a rather short period of mixing with midlatitude air and/or upward transport during fall in October/November (NH) and April/May (SH), respectively, with small latitudinal gradients, immediately before the new polar vortex starts to form. The mean age distributions further confirm that SF6 is destroyed in the mesosphere to a considerable degree. Model calculations with the Karlsruhe simulation model of the middle atmosphere (KASIMA) chemical transport model agree well with observed global distributions of the mean age only if the SF6 sink reactions in the mesosphere are included in the model.

2007 ◽  
Vol 7 (5) ◽  
pp. 13653-13697 ◽  
Author(s):  
G. P. Stiller ◽  
T. von Clarmann ◽  
M. Höpfner ◽  
N. Glatthor ◽  
U. Grabowski ◽  
...  

Abstract. Global distributions of profiles of sulphur hexafluoride (SF6) have been retrieved from limb emission spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat covering the period September 2002 to March 2004. Individual SF6 profiles have a precision of 0.5 pptv below 25 km altitude and a vertical resolution of 4–6 km up to 35 km altitude. These data have been validated versus in situ observations obtained during balloon flights of a cryogenic whole-air sampler. For the tropical troposphere a trend of 0.227±0.008 pptv/yr has been derived from the MIPAS data, which is in excellent agreement with the trend from ground-based flask and in situ measurements from the National Oceanic and Atmospheric Administration Earth System Research Laboratory, Global Monitoring Division. For the data set currently available, based on at least three days of data per month, monthly 5° latitude mean values have a 1σ standard error of 1%. From the global SF6 distributions, global daily and monthly distributions of the apparent mean age of air are inferred by application of the tropical tropospheric trend derived from MIPAS data. The inferred mean ages are provided for the full globe up to 90° N/S, and have a 1σ standard error of 0.25 yr. They range between 0 (near the tropical tropopause) and 7 years (except for situations of mesospheric intrusions) and agree well with earlier observations. The seasonal variation of the mean age of stratospheric air indicates episodes of severe intrusion of mesospheric air during each Northern and Southern polar winter observed, long-lasting remnants of old, subsided polar winter air over the spring and summer poles, and a rather short period of mixing with midlatitude air and/or upward transport during fall in October/November (NH) and April/May (SH), respectively, with small latitudinal gradients, immediately before the new polar vortex starts to form. The mean age distributions further confirm that SF6 is destroyed in the mesosphere to a considerable amount. Model calculations with the Karlsruhe simulation model of the middle atmosphere (KASIMA) chemical transport model agree well with observed global distributions of the mean age only if the SF6 sink reactions in the mesosphere are included in the model.


2011 ◽  
Vol 11 (10) ◽  
pp. 4669-4677 ◽  
Author(s):  
R. Kohlhepp ◽  
S. Barthlott ◽  
T. Blumenstock ◽  
F. Hase ◽  
I. Kaiser ◽  
...  

Abstract. Trends of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) total column abundances above Kiruna (Northern Sweden, 67.84° N, 20.41° E) derived from nearly 14 years (1996–2009) of measurement and model data are presented. The measurements have been performed with a Bruker 120 HR (later Bruker 125 HR) Fourier transform infrared (FTIR) spectrometer and the chemistry-transport model (CTM) used was KASIMA (KArlsruhe SImulation model of the Middle Atmosphere). The total column abundances of ClONO2 and HF calculated by KASIMA agree quite well with the FTIR measurements while KASIMA tends to underestimate the HCl columns. To calculate the long-term trends, a linear function combined with an annual cycle was fitted to the data using a least squares method. The precision of the resulting trends was estimated with the bootstrap resampling method. For HF, both model and measurements show a positive trend that seems to decrease in the last few years. This suggests a stabilisation of the HF total column abundance. Between 1996 and 2009, KASIMA simulates an increase of (+1.51±0.07) %/yr which exceeds the FTIR result of (+0.65±0.25) %/yr. The trends determined for HCl and ClONO2 are significantly negative over the time period considered here. This is expected because the emission of their precursors (chlorofluorocarbons and hydrochlorofluorocarbons) has been restricted in the Montreal Protocol in 1987 and its amendments and adjustments. The trend for ClONO2 from the FTIR measurements amounts to (−3.28±0.56) %/yr and the one for HCl to (−0.81±0.23) %/yr. KASIMA simulates a weaker decrease: For ClONO2, the result is (−0.90±0.10) %/yr and for HCl (−0.17±0.06) %/yr. Part of the difference between measurement and model data can be explained by sampling and the stronger annual cycle indicated by the measurements. There is a factor of about four between the trends of HCl and ClONO2 above Kiruna for both measurement and model data.


2016 ◽  
Vol 9 (9) ◽  
pp. 4355-4373 ◽  
Author(s):  
Swagata Payra ◽  
Philippe Ricaud ◽  
Rachid Abida ◽  
Laaziz El Amraoui ◽  
Jean-Luc Attié ◽  
...  

Abstract. The present analysis deals with one of the most debated aspects of the studies on the upper troposphere/lower stratosphere (UTLS), namely the budget of water vapour (H2O) at the tropical tropopause. Within the French project “Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics” (TRO-pico), a global-scale analysis has been set up based on space-borne observations, models and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316–5 hPa range from August 2011 to March 2013 with an assimilation window of 1 h. Diagnostics based on observations minus analysis and forecast are developed to assess the quality of the assimilated H2O fields. Comparison with an independent source of H2O measurements in the UTLS based on the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses is also shown. Sensitivity studies of the analysed fields have been performed by (1) considering periods when no MLS measurements are available and (2) using H2O data from another MLS version (4.2). The studies have been performed within three different spaces in time and space coincidences with MLS (hereafter referred to as MLS space) and MIPAS (MIPAS space) observations and with the model (model space) outputs and at three different levels: 121 hPa (upper troposphere), 100 hPa (tropopause) and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the reference atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but are consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the vertical resolution of the MIPAS data set at 121 and 100 hPa prevent assessment of the behaviour of the analyses at 121 and 100 hPa, particularly over intense convective areas as the South American, the African and the Maritime continents but, in the lower stratosphere (68 hPa), the analyses are very consistent with MIPAS. Sensitivity studies show the improvement on the H2O analyses in the tropical UTLS when assimilating space-borne measurements of better quality, particularly over the convective areas.


2018 ◽  
Vol 18 (11) ◽  
pp. 8331-8351 ◽  
Author(s):  
Stefan Lossow ◽  
Dale F. Hurst ◽  
Karen H. Rosenlof ◽  
Gabriele P. Stiller ◽  
Thomas von Clarmann ◽  
...  

Abstract. Trend estimates with different signs are reported in the literature for lower stratospheric water vapour considering the time period between the late 1980s and 2010. The NOAA (National Oceanic and Atmospheric Administration) frost point hygrometer (FPH) observations at Boulder (Colorado, 40.0° N, 105.2° W) indicate positive trends (about 0.1 to 0.45 ppmv decade−1). On the contrary, negative trends (approximately −0.2 to −0.1 ppmv decade−1) are derived from a merged zonal mean satellite data set for a latitude band around the Boulder latitude. Overall, the trend differences between the two data sets range from about 0.3 to 0.5 ppmv decade−1, depending on altitude. It has been proposed that a possible explanation for these discrepancies is a different temporal behaviour at Boulder and the zonal mean. In this work we investigate trend differences between Boulder and the zonal mean using primarily simulations from ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System) Atmospheric Chemistry (EMAC), WACCM (Whole Atmosphere Community Climate Model), CMAM (Canadian Middle Atmosphere Model) and CLaMS (Chemical Lagrangian Model of the Stratosphere). On shorter timescales we address this aspect also based on satellite observations from UARS/HALOE (Upper Atmosphere Research Satellite/Halogen Occultation Experiment), Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding) and Aura/MLS (Microwave Limb Sounder). Overall, both the simulations and observations exhibit trend differences between Boulder and the zonal mean. The differences are dependent on altitude and the time period considered. The model simulations indicate only small trend differences between Boulder and the zonal mean for the time period between the late 1980s and 2010. These are clearly not sufficient to explain the discrepancies between the trend estimates derived from the FPH observations and the merged zonal mean satellite data set. Unless the simulations underrepresent variability or the trend differences originate from smaller spatial and temporal scales than resolved by the model simulations, trends at Boulder for this time period should also be quite representative for the zonal mean and even other latitude bands. Trend differences for a decade of data are larger and need to be kept in mind when comparing results for Boulder and the zonal mean on this timescale. Beyond that, we find that the trend estimates for the time period between the late 1980s and 2010 also significantly differ among the simulations. They are larger than those derived from the merged satellite data set and smaller than the trend estimates derived from the FPH observations.


2013 ◽  
Vol 6 (4) ◽  
pp. 937-948 ◽  
Author(s):  
M. Toohey ◽  
T. von Clarmann

Abstract. Climatologies of atmospheric observations are often produced by binning measurements according to latitude and calculating zonal means. The uncertainty in these climatological means is characterised by the standard error of the mean (SEM). However, the usual estimator of the SEM, i.e., the sample standard deviation divided by the square root of the sample size, holds only for uncorrelated randomly sampled measurements. Measurements of the atmospheric state along a satellite orbit cannot always be considered as independent because (a) the time-space interval between two nearest observations is often smaller than the typical scale of variations in the atmospheric state, and (b) the regular time-space sampling pattern of a satellite instrument strongly deviates from random sampling. We have developed a numerical experiment where global chemical fields from a chemistry climate model are sampled according to real sampling patterns of satellite-borne instruments. As case studies, the model fields are sampled using sampling patterns of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and Atmospheric Chemistry Experiment Fourier-Transform Spectrometer (ACE-FTS) satellite instruments. Through an iterative subsampling technique, and by incorporating information on the random errors of the MIPAS and ACE-FTS measurements, we produce empirical estimates of the standard error of monthly mean zonal mean model O3 in 5° latitude bins. We find that generally the classic SEM estimator is a conservative estimate of the SEM, i.e., the empirical SEM is often less than or approximately equal to the classic estimate. Exceptions occur only when natural variability is larger than the random measurement error, and specifically in instances where the zonal sampling distribution shows non-uniformity with a similar zonal structure as variations in the sampled field, leading to maximum sensitivity to arbitrary phase shifts between the sample distribution and sampled field. The occurrence of such instances is thus very sensitive to slight changes in the sampling distribution, and to the variations in the measured field. This study highlights the need for caution in the interpretation of the oft-used classically computed SEM, and outlines a relatively simple methodology that can be used to assess one component of the uncertainty in monthly mean zonal mean climatologies produced from measurements from satellite-borne instruments.


2014 ◽  
Vol 14 (2) ◽  
pp. 1025-1038 ◽  
Author(s):  
C. H. Jackman ◽  
C. E. Randall ◽  
V. L. Harvey ◽  
S. Wang ◽  
E. L. Fleming ◽  
...  

Abstract. The recent 23–30 January and 7–11 March 2012 solar proton event (SPE) periods were substantial and caused significant impacts on the middle atmosphere. These were the two largest SPE periods of solar cycle 24 so far. The highly energetic solar protons produced considerable ionization of the neutral atmosphere as well as HOx (H, OH, HO2) and NOx (N, NO, NO2). We compute a NOx production of 1.9 and 2.1 Gigamoles due to these SPE periods in January and March 2012, respectively, which places these SPE periods among the 12 largest in the past 50 yr. Aura Microwave Limb Sounder (MLS) observations of the peroxy radical, HO2, show significant enhancements of > 0.9 ppbv in the northern polar mesosphere as a result of these SPE periods. Both MLS measurements and Goddard Space Flight Center (GSFC) two-dimensional (2-D) model predictions indicated middle mesospheric ozone decreases of > 20% for several days in the northern polar region with maximum depletions > 60% over 1–2 days as a result of the HOx produced in both the January and March 2012 SPE periods. The SCISAT-1 Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE) and the Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instruments measured NO and NO2 (~ NOx), which indicated enhancements of over 20 ppbv in most of the northern polar mesosphere for several days as a result of these SPE periods. The GSFC 2-D model and the Global Modeling Initiative three-dimensional chemistry and transport model were used to predict the medium-term (~ months) influence and showed that the polar middle atmospheric ozone was most affected by these solar events in the Southern Hemisphere due to the increased downward motion in the fall and early winter. The downward transport moved the SPE-produced NOy to lower altitudes and led to predicted modest destruction of ozone (5–13%) in the upper stratosphere days to weeks after the March 2012 event. Polar total ozone reductions were predicted to be a maximum of 1.5% in 2012 due to these SPEs.


2020 ◽  
Author(s):  
Georgy I. Shapiro ◽  
Jose M. Gonzalez-Ondina ◽  
Xavier Francis ◽  
Hyee S. Lim ◽  
Ali Almehrezi

&lt;p&gt;Modern numerical ocean models have matured over the last decades and are able to provide accurate fore- and hind-cast of the ocean state. The most accurate data could be obtained from the reanalysis where the model run in a hindcast mode with assimilation of available observational data. An obvious benefit of model simulation is that it provides the spatial density and temporal resolution which cannot be achieved by in-situ observations or satellite derived measurements. It is not unusual that even a relatively small area of the ocean model can have in access of 100,000 nodes in the horizontal, each containing vertical profiles of temperature, salinity, velocity and other ocean parameters with a temporal resolution theoretically as high as a few minutes. Remotely sensed (satellite) observations of sea surface temperature can compete with the models in terms of spatial resolution, however they only produce data at the sea surface not the vertical profiles. On the other hand, in-situ observations have a benefit of being much more precise than model simulations. For instance a widely used CTD profiler SBE 911plus has accuracy of about 0.001 &amp;#176;C, which is not achievable by models.&lt;/p&gt;&lt;p&gt;In the creation of a climatic atlas the higher accuracy of individual profiles provided by in-situ measurements may become less beneficial. Assuming the normal distribution of data at each location, the standard error of the mean (SEM) is calculated as SE=S/SQRT(N), where S is the standard deviation of individual data points around the mean, and N is the number of data points. The climatic data are obtained by averaging a large number of individual data points, and here the benefit of having more data points may become a greater advantage than the accuracy of a single observation. &amp;#160;&lt;/p&gt;&lt;p&gt;In this study we have created an ocean climate atlas for the northern part of the Indian Ocean including the Red Sea and the Arabian Gulf using model generated data. The data were taken from Copernicus Marine Environment Monitoring Service (CMEMS) reanalysis product GLOBAL_REANALYSIS_PHY_001_030 with 1/12&amp;#176; horizontal resolution and 50 vertical levels for the period 1998 to 2017. The model component is the NEMO platform driven at the surface by ECMWF ERA-Interim reanalysis. The model assimilates along track altimeter data, satellite Sea Surface Temperature, as well as in-situ temperature and salinity vertical profiles where available.&amp;#160;The monthly data from CMEMS were then averaged over 20 years to produce an atlas at the surface, 10, 20, 30, 75, 100, 125, 150, 200, 250, 300, 400, and 500 m depths. &amp;#160;The standard error of the mean has been calculated for each point and each depth level on the native grid (1/12 degree).&lt;/p&gt;&lt;p&gt;The atlas based on model simulations was compared with the latest version of the World Ocean Atlas (WOA)&amp;#160; 2018 published by the NCEI.&amp;#160; WOA has objectively analysed climatological mean fields on a &amp;#188; &amp;#160;degree grid. The differences between the mean values and SEMs from observational and simulated atlases are analysed, and the potential causes of mismatch are discussed.&lt;/p&gt;


2014 ◽  
Vol 8 (4) ◽  
pp. 1577-1587 ◽  
Author(s):  
C. Palerme ◽  
J. E. Kay ◽  
C. Genthon ◽  
T. L'Ecuyer ◽  
N. B. Wood ◽  
...  

Abstract. Climate models predict Antarctic precipitation to increase during the 21st century, but their present day Antarctic precipitation differs. A model-independent climatology of the Antarctic precipitation characteristics, such as snowfall rates and frequency, is needed to assess the models, but it is not yet available. Satellite observations of precipitation by active sensors has been possible in the polar regions since the launch of CloudSat in 2006. Here, we use two CloudSat products to generate the first multi-year, model-independent climatology of Antarctic precipitation. The first product is used to determine the frequency and the phase of precipitation, while the second product is used to assess the snowfall rate. The mean snowfall rate from August 2006 to April 2011 is 171 mm year−1 over the Antarctic ice sheet, north of 82° S. While uncertainties on individual precipitation retrievals from CloudSat data are potentially large, the mean uncertainty should be much smaller, but cannot be easily estimated. There are no in situ measurements of Antarctic precipitation to directly assess the new climatology. However, distributions of both precipitation occurrences and rates generally agree with the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim data set, the production of which is constrained by various in situ and satellite observations, but does not use any data from CloudSat. The new data set thus offers unprecedented capability to quantitatively assess Antarctic precipitation statistics and rates in climate models.


2006 ◽  
Vol 6 (9) ◽  
pp. 2483-2501 ◽  
Author(s):  
M. Dorf ◽  
H. Bösch ◽  
A. Butz ◽  
C. Camy-Peyret ◽  
M. P. Chipperfield ◽  
...  

Abstract. For the first time, results of four stratospheric BrO profiling instruments, are presented and compared with reference to the SLIMCAT 3-dimensional chemical transport model (3-D CTM). Model calculations are used to infer a BrO profile validation set, measured by 3 different balloon sensors, for the new Envisat/SCIAMACHY (ENVIronment SATellite/SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) satellite instrument. The balloon observations include (a) balloon-borne in situ resonance fluorescence detection of BrO (Triple), (b) balloon-borne solar occultation DOAS measurements (Differential Optical Absorption Spectroscopy) of BrO in the UV, and (c) BrO profiling from the solar occultation SAOZ (Systeme d'Analyse par Observation Zenithale) balloon instrument. Since stratospheric BrO is subject to considerable diurnal variation and none of the measurements are performed close enough in time and space for a direct comparison, all balloon observations are considered with reference to outputs from the 3-D CTM. The referencing is performed by forward and backward air mass trajectory calculations to match the balloon with the satellite observations. The diurnal variation of BrO is considered by 1-D photochemical model calculation along the trajectories. The 1-D photochemical model is initialised with output data of the 3-D model with additional constraints on the vertical transport, the total amount and photochemistry of stratospheric bromine as given by the various balloon observations. Total [Bry]=(20.1±2.5) pptv obtained from DOAS BrO observations at mid-latitudes in 2003, serves as an upper limit of the comparison. Most of the balloon observations agree with the photochemical model predictions within their given error estimates. First retrieval exercises of BrO limb profiling from the SCIAMACHY satellite instrument on average agree to around 20% with the photochemically-corrected balloon observations of the remote sensing instruments (SAOZ and DOAS). An exception is the in situ Triple profile, in which the balloon and satellite data mostly does not agree within the given errors. In general, the satellite measurements show systematically higher values below 25 km than the balloon data and a change in profile shape above about 25 km.


2021 ◽  
Vol 108 (Supplement_2) ◽  
Author(s):  
J Mahon ◽  
C McCarthy ◽  
G Sheridan ◽  
J Cashman ◽  
J O'Byrne ◽  
...  

Abstract Introduction The Exeter V40 cemented femoral stem was first introduced in 2000. The largest single-centre analysis of this implant to date was published in 2018, with excellent results at a minimum of 10-years for the first 540 cases performed at the designer centre in the Exeter NHS Trust. The aim of this current study is to report long term outcomes and survivorship for the Exeter V40 stem in a non-designer centre. Method All patients undergoing primary total hip arthroplasty using the Exeter V40 femoral stem between January 1st 2005 and January 31st 2010 were eligible for inclusion. Outcome measures included data on all components in situ beyond 10 years, death occurring within 10 years with components in situ and all-cause revision surgery. Results A total of 829 stems were included in the data set. Of these, 808 (97.5%) had no further surgery within the follow-up period; 648 stems (78.1%) were in situ beyond 10 years, and 165 (19.9%) were in situ at death before 10 years. The mean preoperative WOMAC score was 61±15.9 with a mean postoperative score of 20.4±19.3. Conclusions The Exeter V40 cemented femoral stem demonstrates excellent functional outcomes and survival when used in a high-volume non-designer centre.


Sign in / Sign up

Export Citation Format

Share Document