scholarly journals A six year satellite-based assessment of the regional variations in aerosol indirect effects

2009 ◽  
Vol 9 (12) ◽  
pp. 4091-4114 ◽  
Author(s):  
T. A. Jones ◽  
S. A. Christopher ◽  
J. Quaas

Abstract. Aerosols act as cloud condensation nuclei (CCN) for cloud water droplets, and changes in aerosol concentrations have significant microphysical impacts on the corresponding cloud properties. Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud properties are combined with NCEP Reanalysis data for six different regions around the globe between March 2000 and December 2005 to study the effects of different aerosol, cloud, and atmospheric conditions on the aerosol indirect effect (AIE). Emphasis is placed in examining the relative importance of aerosol concentration, type, and atmospheric conditions (mainly vertical motion) to AIE from region to region. Results show that in most regions, AIE has a distinct seasonal cycle, though the cycle varies in significance and period from region to region. In the Arabian Sea (AS), the six-year mean anthropogenic + dust AIE is −0.27 Wm−2 and is greatest during the summer months (<−2.0 Wm−2) during which aerosol concentrations (from both dust and anthropogenic sources) are greatest. Comparing AIE as a function of thin (LWP<20 gm−2) vs. thick (LWP≥20 gm−2) clouds under conditions of large scale ascent or decent at 850 hPa showed that AIE is greatest for thick clouds during periods of upward vertical motion. In the Bay of Bengal, AIE is negligible owing to less favorable atmospheric conditions, a lower concentration of aerosols, and a non-alignment of aerosol and cloud layers. In the eastern North Atlantic, AIE is weakly positive (+0.1 Wm−2) with dust aerosol concentration being much greater than the anthropogenic or sea salt components. However, elevated dust in this region exists above the maritime cloud layers and does not have a hygroscopic coating, which occurs in AS, preventing the dust from acting as CCN and limiting AIE. The Western Atlantic has a large anthropogenic aerosol concentration transported from the eastern United States producing a modest anthropogenic AIE (−0.46 Wm−2). Anthropogenic AIE is also present off the West African coast corresponding to aerosols produced from seasonal biomass burning (both natural and man-made). Interestingly, atmospheric conditions are not particularly favorable for cloud formation compared to the other regions during the times where AIE is observed; however, clouds are generally thin (LWP<20 gm−2) and concentrated very near the surface. Overall, we conclude that vertical motion, aerosol type, and aerosol layer heights do make a significant contribution to AIE and that these factors are often more important than total aerosol concentration alone and that the relative importance of each differs significantly from region to region.

2008 ◽  
Vol 8 (6) ◽  
pp. 20349-20397 ◽  
Author(s):  
T. A. Jones ◽  
S. A. Christopher ◽  
J. Quaas

Abstract. Since aerosols act as cloud condensation nuclei (CCN) for cloud water droplets, changes in aerosol concentrations having significant impacts on the corresponding cloud properties. An increase in aerosol concentration leads to an increase in CCN, with an associated decrease in cloud droplet size for a given cloud liquid water content. Smaller droplet sizes may then lead to a reduction in precipitation efficiency and an increase in cloud lifetimes, which induces more reflection of solar radiation back into space, cooling the atmosphere below the cloud layer. In reality, this relationship is much more complex and is interrelated between aerosol, cloud, and atmospheric conditions present at any one time. MODIS aerosol and cloud properties are combined with NCEP Reanalysis data for eight different regions around the globe between March 2000 and December 2005 to study the effects of different aerosol, cloud, and atmospheric conditions on the aerosol indirect effect (AIE). The first AIE for both anthropogenic and dust aerosols is calculated so that the importance of each can be compared. The unique aspect of this research is that it combines multiple satellite data sets over a six year period to provide a comprehensive analysis of indirect effects for different aerosol regimes around the globe. Results show that in most regions, AIE has a distinct seasonal cycle, though the cycle varies in significance and period from region to region. In the Arabian Sea, the six-year mean anthropogenic + dust AIE is −0.4 Wm−2 and is greatest during the summer months (<−2.0 Wm−2) during which dust aerosol concentration is greatest, significant concentrations of anthropogenic aerosols are present, and upward vertical motion is also present providing a favorable environment for cloud formation. In the Bay of Bengal, AIE was negligible owing to less favorable atmospheric conditions and a lower concentration of aerosols. In the eastern North Atlantic, AIE was also small (<0.1 Wm−2) and in this region dust aerosol concentration is much greater than the anthropogenic or sea salt components. However, elevated dust in this region may also absorb solar radiation and warm the atmosphere, stabilizing the atmosphere as evidenced by weak vertical motion during the summer (0.02 Pa s−1) when AOT is greatest. Lower average cloud fraction compared to other regions allows the absorbing effect to offset the cooling effect associated with increasing CCN. The western Atlantic and Pacific oceans have large anthropogenic aerosol concentrations transported from the United States and China respectively and produce modest anthropogenic AIE (0.7, 0.9 Wm−2) in these regions as expected. Anthropogenic AIE was also present off the West African coast corresponding to aerosols produced from seasonal biomass burning. Interestingly, atmospheric conditions were not particularly favorable for cloud formation compared to the other regions during the times where AIE was observed. Overall, we are able to conclude that aerosol type, atmospheric conditions and their relative vertical distributions are a key factors as to whether or not significant AIE occurs and simple correlations between AOT and cloud properties are insufficient to explain the AIE.


2016 ◽  
Vol 29 (23) ◽  
pp. 8471-8493 ◽  
Author(s):  
Dominikus Heinzeller ◽  
Wolfgang Junkermann ◽  
Harald Kunstmann

Abstract It is commonly understood that the observed decline in precipitation in southwestern Australia during the twentieth century is caused by anthropogenic factors. Candidates therefore are changes to large-scale atmospheric circulations due to global warming, extensive deforestation, and anthropogenic aerosol emissions—all of which are effective on different spatial and temporal scales. This contribution focuses on the role of rapidly rising aerosol emissions from anthropogenic sources in southwestern Australia around 1970. An analysis of historical long-term rainfall data of the Bureau of Meteorology shows that southwestern Australia as a whole experienced a gradual decline in precipitation over the twentieth century. However, on smaller scales and for the particular example of the Perth catchment area, a sudden drop in precipitation around 1970 is apparent. Modeling experiments at a convection-resolving resolution of 3.3 km using the Weather Research and Forecasting (WRF) Model version 3.6.1 with the aerosol-aware Thompson–Eidhammer microphysics scheme are conducted for the period 1970–74. A comparison of four runs with different prescribed aerosol emissions and without aerosol effects demonstrates that tripling the pre-1960s atmospheric CCN and IN concentrations can suppress precipitation by 2%–9%, depending on the area and the season. This suggests that a combination of all three processes is required to account for the gradual decline in rainfall seen for greater southwestern Australia and for the sudden drop observed in areas along the west coast in the 1970s: changing atmospheric circulations, deforestation, and anthropogenic aerosol emissions.


2013 ◽  
Vol 13 (8) ◽  
pp. 4235-4251 ◽  
Author(s):  
R. H. Moore ◽  
V. A. Karydis ◽  
S. L. Capps ◽  
T. L. Lathem ◽  
A. Nenes

Abstract. We use the Global Modelling Initiative (GMI) chemical transport model with a cloud droplet parameterisation adjoint to quantify the sensitivity of cloud droplet number concentration to uncertainties in predicting CCN concentrations. Published CCN closure uncertainties for six different sets of simplifying compositional and mixing state assumptions are used as proxies for modelled CCN uncertainty arising from application of those scenarios. It is found that cloud droplet number concentrations (Nd) are fairly insensitive to the number concentration (Na) of aerosol which act as CCN over the continents (∂lnNd/∂lnNa ~10–30%), but the sensitivities exceed 70% in pristine regions such as the Alaskan Arctic and remote oceans. This means that CCN concentration uncertainties of 4–71% translate into only 1–23% uncertainty in cloud droplet number, on average. Since most of the anthropogenic indirect forcing is concentrated over the continents, this work shows that the application of Köhler theory and attendant simplifying assumptions in models is not a major source of uncertainty in predicting cloud droplet number or anthropogenic aerosol indirect forcing for the liquid, stratiform clouds simulated in these models. However, it does highlight the sensitivity of some remote areas to pollution brought into the region via long-range transport (e.g., biomass burning) or from seasonal biogenic sources (e.g., phytoplankton as a source of dimethylsulfide in the southern oceans). Since these transient processes are not captured well by the climatological emissions inventories employed by current large-scale models, the uncertainties in aerosol-cloud interactions during these events could be much larger than those uncovered here. This finding motivates additional measurements in these pristine regions, for which few observations exist, to quantify the impact (and associated uncertainty) of transient aerosol processes on cloud properties.


2021 ◽  
Author(s):  
Heido Trofimov ◽  
Velle Toll

&lt;p&gt;Pollution tracks in clouds induced by anthropogenic aerosols (Toll et al 2019, Nature, https://doi.org/10.1038/s41586-019-1423-9) are visually detectable ship-track-like quasi-linear polluted cloud features in satellite imagery. Pollution tracks provide a direct way to study aerosol-cloud interactions, the most uncertain mechanism of anthropogenic climate forcing. Here, we study environmental conditions favourable for pollution tracks&amp;#8217; formation. We use meteorological data from in-situ observations and ERA5 reanalysis and cloud properties derived from MODIS retrievals over the period 2000-2019. We detected pollution track occurrences at the anthropogenic air pollution hot spots of Norilsk and Cherepovec in Russia and Thompson in Canada. In Norilsk, there are large Nickel smelters, in Cherepovec, a steel manufacturing plant, and in Thompson nickel mining and milling operations take place. We compare the meteorological conditions of track-days to cloudy no-track-days. Depending on the studied location, polluted cloud tracks occur 2.7% to 3.5% of the time. Preliminary results show track formation dependence on large-scale dynamical situation, atmospheric stability, unperturbed cloud properties and relative humidity below and above clouds. The track formation could be limited by aerosols, aerosol vertical transport and activation or cloud susceptibility. Our results help to reduce the uncertainty associated with the anthropogenic aerosol impacts on clouds.&lt;/p&gt;


2008 ◽  
Vol 65 (6) ◽  
pp. 1721-1748 ◽  
Author(s):  
A. P. Khain ◽  
N. BenMoshe ◽  
A. Pokrovsky

Abstract The simulation of the dynamics and the microphysics of clouds observed during the Large-Scale Biosphere–Atmosphere Experiment in Amazonia—Smoke, Aerosols, Clouds, Rainfall, and Climate (LBA–SMOCC) campaign, as well as extremely continental and extremely maritime clouds, is performed using an updated version of the Hebrew University spectral microphysics cloud model (HUCM). A new scheme of diffusional growth allows the reproduction of in situ–measured droplet size distributions including those formed in extremely polluted air. It was shown that pyroclouds forming over the forest fires can precipitate. Several mechanisms leading to formation of precipitation from pyroclouds are considered. The mechanisms by which aerosols affect the microphysics and precipitation of warm cloud-base clouds have been investigated by analyzing the mass, heat, and moisture budgets. The increase in aerosol concentration increases both the generation and the loss of the condensate mass. In the clouds developing in dry air, the increase in the loss is dominant, which suggests a decrease in the accumulated precipitation with the aerosol concentration increase. On the contrary, an increase in aerosol concentration in deep maritime clouds leads to an increase in precipitation. The precipitation efficiency of clouds in polluted air is found to be several times lower than that of clouds forming in clean air. A classification of the results of aerosol effects on precipitation from clouds of different types developing in the atmosphere with high freezing level (about 4 km) is proposed. The role of air humidity and other factors in precipitation’s response to aerosols is discussed. The analysis shows that many discrepancies between the results reported in different observational and numerical studies can be attributed to the different atmospheric conditions and cloud types analyzed.


2021 ◽  
Author(s):  
Yuntao Wei ◽  
Zhaoxia Pu

AbstractA set of cloud-permitting-scale numerical simulations during January–February 2018 is used to examine the diurnal cycle (DC) of precipitation and near-surface variables (e.g., 2 m temperature, 10 m wind and convergence) over the Indo-Pacific Maritime Continent under the impacts of shore-orthogonal ambient winds (SOAWs). It is found that the DC of these variables and their variabilities of daily maxima, minima, and diurnal amplitudes vary over land, sea, and coastal regions. Among all variables, the DC of precipitation has the highest linear correlation with near-surface convergence (near-surface temperature) over coastal (noncoastal) regions. The correlations among the DCs of precipitation, wind, and heating are greater over the ocean than over land. Sine curves can model accurately the DCs of most variables over the ocean, but not over land. SOAWs act to influence the DC mainly by affecting the diurnal amplitude of the considered variables, with DC being stronger under more strengthened offshore SOAWs, though variable dependence and regional variability exist. Composite analysis over Sumatra reveals that under weak SOAWs, shallow clouds are dominant and cause a pre-moistening effect, supporting shallow-to-deep convection transition. A sea breeze circulation (SBC) with return flow aloft can develop rapidly. Cold pools are better able to trigger new updrafts and contribute to the upscale growth and inland migration of deep convection. In addition, warm gravity waves can propagate upward throughout the troposphere, thereby supporting a strong DC. In contrast, under strong SOAWs, both shallow and middle-high clouds prevail and persist throughout the day. The evolution of moistening and SBC is reduced, leading to weak variation in vertical motion and rainwater confined to the boundary layer. Large-scale winds, moisture, and convection are discussed to interpret how strong SOAWs affect the DC of Sumatra.


2003 ◽  
Vol 3 (4) ◽  
pp. 951-967 ◽  
Author(s):  
P. Guyon ◽  
B. Graham ◽  
J. Beck ◽  
O. Boucher ◽  
E. Gerasopoulos ◽  
...  

Abstract. We investigated the size distribution, scattering and absorption properties of Amazonian aerosols and the optical thickness of the aerosol layer under the pristine background conditions typical of the wet season, as well as during the biomass-burning-influenced dry season. The measurements were made during two campaigns in 1999 as part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). In moving from the wet to the dry season, median particle numbers were observed to increase from values comparable to those of the remote marine boundary layer (~400 cm-3) to values more commonly associated with urban smog (~4000 cm-3), due to a massive injection of submicron smoke particles. Aerosol optical depths at 500 nm increased from 0.05 to 0.8 on average, reaching a value of 2 during the dry season. Scattering and absorption coefficients, measured at 550 nm, showed a concomitant increase from average values of 6.8 and 0.4 Mm-1 to values of 91 and 10 Mm-1, respectively, corresponding to an estimated decrease in single-scattering albedo from ca. 0.97 to 0.91. The roughly tenfold increase in many of the measured parameters attests to the dramatic effect that extensive seasonal biomass burning (deforestation, pasture cleaning) is having on the composition and properties of aerosols over Amazonia. The potential exists for these changes to impact on regional and global climate through changes to the extinction of solar radiation as well as the alteration of cloud properties.


2017 ◽  
Vol 30 (23) ◽  
pp. 9455-9474 ◽  
Author(s):  
Casey J. Wall ◽  
Dennis L. Hartmann ◽  
Po-Lun Ma

Instantaneous, coincident, footprint-level satellite observations of cloud properties and radiation taken during austral summer over the Southern Ocean are used to study relationships between clouds and large-scale meteorology. Cloud properties are very sensitive to the strength of vertical motion in the midtroposphere, and low-cloud properties are sensitive to estimated inversion strength, low-level temperature advection, and sea surface temperature. These relationships are quantified. An index for the meteorological anomalies associated with midlatitude cyclones is presented, and it is used to reveal the sensitivity of clouds to the meteorology within the warm and cold sectors of cyclones. The observed relationships between clouds and meteorology are compared to those in the Community Atmosphere Model, version 5 (CAM5), using satellite simulators. Low clouds simulated by CAM5 are too few, are too bright, and contain too much ice. In the cold sector of cyclones, the low clouds are also too sensitive to variations in the meteorology. When CAM5 is coupled with an updated boundary layer parameterization known as Cloud Layers Unified by Binormals (CLUBB), bias in the ice content of low clouds is dramatically reduced. More generally, this study demonstrates that examining the instantaneous time scale is a powerful approach to understanding the physical processes that control clouds and how they are represented in climate models. Such an evaluation goes beyond the cloud climatology and exposes model bias under various meteorological conditions.


2003 ◽  
Vol 3 (2) ◽  
pp. 1367-1414 ◽  
Author(s):  
P. Guyon ◽  
B. Graham ◽  
J. Beck ◽  
O. Boucher ◽  
E. Gerasopoulos ◽  
...  

Abstract. We investigated the size distribution, scattering and absorption properties of Amazonian aerosols and the optical thickness of the aerosol layer under the pristine background conditions typical of the wet season, as well as during the biomass-burning-influenced dry season. The measurements were made during two campaigns in 1999 as part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). In moving from the wet to the dry season, median particle numbers were observed to increase from values comparable to those of the remote marine boundary layer (~400cm−3) to values more commonly associated with urban smog (~4000 cm−3), due to a massive injection of submicron smoke particles. Aerosol optical depths at 500\\,nm increased from 0.05 to 0.8 on average, reaching a value of 2 during the dry season. Scattering and absorption coefficients, measured at 550 nm, showed a concomitant increase from average values of 6.8 and 0.4 Mm−1 to values of 91 and 10 Mm−1, respectively, corresponding to an estimated decrease in single-scattering albedo from ca. 0.97 to 0.91. The roughly tenfold increase in many of the measured parameters attests to the dramatic effect that extensive seasonal biomass burning (deforestation, pasture cleaning) is having on the composition and properties of aerosols over Amazonia. The potential exists for these changes to impact on regional and global climate through changes to the extinction of solar radiation as well as the alteration of cloud properties.


Sign in / Sign up

Export Citation Format

Share Document