scholarly journals On the sub-micron aerosol size distribution in a coastal-rural site at El Arenosillo Station (SW-Spain)

2011 ◽  
Vol 11 (2) ◽  
pp. 3813-3856 ◽  
Author(s):  
M. Sorribas ◽  
B. A. de la Morena ◽  
B. Wehner ◽  
J. F. López ◽  
N. Prats ◽  
...  

Abstract. This study is focused on the analysis of the sub-micron aerosol characteristics at rural and coastal environment in Southwestern Spain. Particle number size distributions were measured in the size range (14–673) nm using a Scanning Mobility Particle Sizer (SMPS, Model 3936-TSI), from 15 July 2004 to 31 July 2006 at El Arenosillo Station. Mean total concentration was 8660 cm−3 and mean concentrations for the nucleation, Aitken and accumulation modes particles were 2830 cm−3, 4110 cm−3 and 1720 cm−3, respectively. Mean geometric diameters of the four modes particles, which characterized the mean size distribution per month, were about 16 nm, 42 nm, 103 nm and 237 nm. Two kinds of episodes produced a maximum of the total concentration around noon: the new particle formation and the regional recirculation such as the sea-land breeze. Two types of nucleation events (called N$1 and N2) were observed. Events N1 were an example of the influence of regional sources and Events N2 showed the weight of local industries over the rural and coastal background levels. The 60% of nucleation events were related to NE and NW wind sectors (N1 and N2 respectively), a ΔT higher than 12 °C, a wind speed higher than 2.3 m s−1 and a total surface area for the accumulation mode particles below of 11 190 μ m2 cm−3. The influence of the sea-land breeze processes has been analyzed, observing increases of up to 50%, 110% and 90% of the particle concentration for the nucleation, Aitken and accumulation modes. Annual evolution of monthly averages allowed to conclude that the increase or decrease of 1 cm−3 of the concentration for nucleation mode particles was related to opposite trend of 0.5 cm−3 of the concentration for accumulation mode. This anti-correlation produced a weak seasonal evolution of the total particle concentration.

2011 ◽  
Vol 11 (21) ◽  
pp. 11185-11206 ◽  
Author(s):  
M. Sorribas ◽  
B. A. de la Morena ◽  
B. Wehner ◽  
J. F. López ◽  
N. Prats ◽  
...  

Abstract. This study focuses on the analysis of the sub-micron aerosol characteristics at El Arenosillo Station, a rural and coastal environment in South-western Spain between 1 August 2004 and 31 July 2006 (594 days). The mean total concentration (NT) was 8660 cm−3 and the mean concentrations in the nucleation (NNUC), Aitken (NAIT) and accumulation (NACC) particle size ranges were 2830 cm−3, 4110 cm−3 and 1720 cm−3, respectively. Median size distribution was characterised by a single-modal fit, with a geometric diameter, median number concentration and geometric standard deviation of 60 nm, 5390 cm−3 and 2.31, respectively. Characterisation of primary emissions, secondary particle formation, changes to meteorology and long-term transport has been necessary to understand the seasonal and annual variability of the total and modal particle concentration. Number concentrations exhibited a diurnal pattern with maximum concentrations around noon. This was governed by the concentrations of the nucleation and Aitken modes during the warm seasons and only by the nucleation mode during the cold seasons. Similar monthly mean total concentrations were observed throughout the year due to a clear inverse variation between the monthly mean NNUC and NACC. It was related to the impact of desert dust and continental air masses on the monthly mean particle levels. These air masses were associated with high values of NACC which suppressed the new particle formation (decreasing NNUC). Each day was classified according to a land breeze flow or a synoptic pattern influence. The median size distribution for desert dust and continental aerosol was dominated by the Aitken and accumulation modes, and marine air masses were dominated by the nucleation and Aitken modes. Particles moved offshore due to the land breeze and had an impact on the particle burden at noon, especially when the wind was blowing from the NW sector in the morning during summer time. This increased NNUC and NAIT by factors of 3.1 and 2.4, respectively. Nucleation events with the typical "banana" shape were characterised by a mean particle nucleation rate of 0.74 cm−3 s−1, a mean growth rate of 1.96 nm h−1 and a mean total duration of 9.25 h (starting at 10:55 GMT and ending at 20:10 GMT). They were observed for 48 days. Other nucleation events were identified as those produced by the emissions from the industrial areas located at a distance of 35 km. They were observed for 42 days. Both nucleation events were strongly linked to the marine air mass origin.


2019 ◽  
Vol 19 (18) ◽  
pp. 11985-12006 ◽  
Author(s):  
Peter J. Marinescu ◽  
Ezra J. T. Levin ◽  
Don Collins ◽  
Sonia M. Kreidenweis ◽  
Susan C. van den Heever

Abstract. A quality-controlled, 5-year dataset of aerosol number size distributions (particles with diameters (Dp) from 7 nm through 14 µm) was developed using observations from a scanning mobility particle sizer, aerodynamic particle sizer, and a condensation particle counter at the Department of Energy's Southern Great Plains (SGP) site. This dataset was used for two purposes. First, typical characteristics of the aerosol size distribution (number, surface area, and volume) were calculated for the SGP site, both for the entire dataset and on a seasonal basis, and size distribution lognormal fit parameters are provided. While the median size distributions generally had similar shapes (four lognormal modes) in all the seasons, there were some significant differences between seasons. These differences were most significant in the smallest particles (Dp<30 nm) and largest particles (Dp>800 nm). Second, power spectral analysis was conducted on this long-term dataset to determine key temporal cycles of total aerosol concentrations, as well as aerosol concentrations in specified size ranges. The strongest cyclic signal was associated with a diurnal cycle in total aerosol number concentrations that was driven by the number concentrations of the smallest particles (Dp<30 nm). This diurnal cycle in the smallest particles occurred in all seasons in ∼50 % of the observations, suggesting a persistent influence of new particle formation events on the number concentrations observed at the SGP site. This finding is in contrast with earlier studies that suggest new particle formation is observed primarily in the springtime at this site. The timing of peak concentrations associated with this diurnal cycle was shifted by several hours depending on the season, which was consistent with seasonal differences in insolation and boundary layer processes. Significant diurnal cycles in number concentrations were also found for particles with Dp between 140 and 800 nm, with peak concentrations occurring in the overnight hours, which were primarily associated with both nitrate and organic aerosol cycles. Weaker cyclic signals were observed for longer timescales (days to weeks) and are hypothesized to be related to the timescales of synoptic weather variability. The strongest periodic signals (3.5–5 and 7 d cycles) for these longer timescales varied depending on the season, with no cyclic signals and the lowest variability in the summer.


2016 ◽  
Vol 33 (4) ◽  
pp. 351-364 ◽  
Author(s):  
A Noël ◽  
G Truchon ◽  
Y Cloutier ◽  
M Charbonneau ◽  
K Maghni ◽  
...  

There is currently no consensus on the best exposure metric(s) for expressing nanoparticle (NP) dose. Although surface area has been extensively studied for inflammatory responses, it has not been as thoroughly validated for cytotoxicity or oxidative stress effects. Since inhaled NPs deposit and interact with lung cells based on agglomerate size, we hypothesize that mass concentration combined with aerosol size distribution is suitable for NP risk assessment. The objective of this study was to evaluate different exposure metrics for inhaled 5 nm titanium dioxide aerosols composed of small (SA < 100 nm) or large (LA > 100 nm) agglomerates at 2, 7, and 20 mg/m3 on rat lung inflammatory, cytotoxicity, and oxidative stress responses. We found a significant positive correlation ( r = 0.98, p < 0.01) with the inflammatory reaction, measured by the number of neutrophils and the mass concentration when considering all six (SA + LA) aerosols. This correlation was similar ( r = 0.87) for total surface area. Regarding cytotoxicity and oxidative stress responses, measured by lactate dehydrogenase and 8-isoprostane, respectively, and mass or total surface area as an exposure metric, we observed significant positive correlations only with SA aerosols for both the mass concentration and size distribution ( r > 0.91, p < 0.01), as well as for the total surface area ( r > 0.97, p < 0.01). These data show that mass or total surface area concentrations alone are insufficient to adequately predict oxidant and cytotoxic pulmonary effects. Overall, our study indicates that considering NP size distribution along with mass or total surface area concentrations contributes to a more mechanistic discrimination of pulmonary responses to NP exposure.


2005 ◽  
Vol 5 (6) ◽  
pp. 1527-1543 ◽  
Author(s):  
R. Krejci ◽  
J. Ström ◽  
M. de Reus ◽  
J. Williams ◽  
H. Fischer ◽  
...  

Abstract. We present measurements of aerosol physico-chemical properties below 5 km altitude over the tropical rain forest and the marine boundary layer (MBL) obtained during the LBA-CLAIRE 1998 project. The MBL aerosol size distribution some 50-100km of the coast of French Guyana and Suriname showed a bi-modal shape typical of aged and cloud processed aerosol. The average particle number density in the MBL was 383cm-3. The daytime mixed layer height over the rain forest for undisturbed conditions was estimated to be between 1200-1500m. During the morning hours the height of the mixed layer increased by 144-180mh-1. The median daytime aerosol number density in the mixed layer increased from 450cm-3 in the morning to almost 800cm-3 in the late afternoon. The evolution of the aerosol size distribution in the daytime mixed layer over the rain forest showed two distinct patterns. Between dawn and midday, the Aitken mode particle concentrations increased, whereas later during the day, a sharp increase of the accumulation mode aerosol number densities was observed, resulting in a doubling of the morning accumulation mode concentrations from 150cm-3 to 300cm-3. Potential sources of the Aitken mode particles are discussed here including the rapid growth of ultrafine aerosol particles formed aloft and subsequently entrained into the mixed layer, as well as the contribution of emissions from the tropical vegetation to Aitken mode number densities. The observed increase of the accumulation mode aerosol number densities is attributed to the combined effect of: the direct emissions of primary biogenic particles from the rain forest and aerosol in-cloud processing by shallow convective clouds. Based on the similarities among the number densities, the size distributions and the composition of the aerosol in the MBL and the nocturnal residual layer we propose that the air originating in the MBL is transported above the nocturnal mixed layer up to 300-400km inland over the rain forest by night without significant processing.


2009 ◽  
Vol 9 (13) ◽  
pp. 4261-4278 ◽  
Author(s):  
L. I. Kleinman ◽  
S. R. Springston ◽  
J. Wang ◽  
P. H. Daum ◽  
Y.-N. Lee ◽  
...  

Abstract. As part of the MILAGRO field campaign, the DOE G-1 aircraft was used to make measurements over and downwind of Mexico City with the objective of determining growth characteristics of aerosols from a megacity urban source. This study focuses on number concentration and size distributions. It is found that a 5-fold increase in aerosol volume is accompanied by about a 5-fold increase in accumulation mode number concentration. There is growth in aerosol volume because there are more accumulation mode particles, not because of an increase in the average size of accumulation particles. Condensation and volume growth laws were examined to see whether either is consistent with observations. Condensation calculations show that the growth of Aitken mode particles into the accumulation mode size range gives the required increase in number concentration. There are minimal changes in the accumulation mode size distribution with age, consistent with observations. Volume-growth in contrast yields a population of large particles, distinctly different from what is observed. Detailed model calculations are required to translate our observations into specific information on the volatility and properties of secondary organic aerosol.


2007 ◽  
Vol 7 (3) ◽  
pp. 887-897 ◽  
Author(s):  
T. W. Chan ◽  
M. Mozurkewich

Abstract. Absolute principal component analysis can be applied, with suitable modifications, to atmospheric aerosol size distribution measurements. This method quickly and conveniently reduces the dimensionality of a data set. The resulting representation of the data is much simpler, but preserves virtually all the information present in the original measurements. Here we demonstrate how to combine the simplified size distribution data with trace gas measurements and meteorological data to determine the origins of the measured particulate matter using absolute principal component analysis. We have applied the analysis to four different sets of field measurements that were conducted at three sites in southern Ontario. Several common factors were observed at all the sites; these were identified as photochemically produced secondary aerosol particles, regional pollutants (including accumulation mode aerosol particles), and trace gas variations associated with boundary layer dynamics. Each site also exhibited a factor associated specifically with that site: local industrial emissions in Hamilton (urban site), processed nucleation mode particles at Simcoe (polluted rural site), and transported fine particles at Egbert (downwind from Toronto).


2003 ◽  
Vol 3 (3) ◽  
pp. 2783-2833 ◽  
Author(s):  
P. Tunved ◽  
H.-C. Hansson ◽  
M. Kulmala ◽  
P. Aalto ◽  
Y. Viisanen ◽  
...  

Abstract. Size distribution measurements performed at five different stations have been investigated during a one-year period between 01 June 2000 and 31 May 2001 with focus on diurnal, seasonal and geographical differences of size distribution properties. The stations involved cover a large geographical area ranging from the Finnish Lapland (67° N) down to southern Sweden (56° N) in the order Värriö, Pallas, Hyytiälä, Aspvreten and Vavihill. The shape of the size distribution is typically bimodal during winter with a larger fraction of accumulation mode particles compared to the other seasons. Highest Aitken mode concentration is found during summer and spring. The maximum of nucleation events occur during spring months. Nucleation events occur during other seasons as well, although not as frequently. Large differences were found between different categories of stations. Northerly located stations such as Pallas and Värriö presented well-separated Aitken and accumulation modes, while the two modes often overlap significantly at the two southernmost stations Vavihill and Aspvreten. A method to cluster trajectories was used to analyse the impact of long-range transport on the observed aerosol properties. Clusters of trajectories arriving from the continent were clearly associated with size distributions shifted towards the accumulation mode. This feature was more pronounced the further south the station was located. Marine- or Arctic-type clusters were associated with large variability in the nuclei size ranges. A quasi-lagrangian approach was used to investigate transport related changes in the aerosol properties. Typically, an increase in especially Aitken mode concentrations was observed when advection from the north occurs, i.e. allowing more continental influence on the aerosol when comparing the different measurement sites. When trajectory clusters arrive to the stations from SW, a gradual decrease in number concentration is experienced in all modes as latitude of measurement site increases.


2011 ◽  
Vol 11 (7) ◽  
pp. 19683-19727 ◽  
Author(s):  
J. H. Kim ◽  
S. S. Yum ◽  
S. Shim ◽  
S.-C. Yoon ◽  
J. G. Hudson ◽  
...  

Abstract. Aerosol size distribution, total concentration (i.e., condensation nuclei (CN) concentration, NCN), cloud condensation nuclei (CCN) concentration (NCCN), hygroscopicity at ~90 % relative humidity (RH) were measured at a background monitoring site at Gosan, Jeju Island, south of the Korea Peninsula in August 2006, April to May 2007 and August to October 2008. Similar measurement took place in August 2009 at another background site (Baengnyeongdo Comprehensive Monitoring Observatory, BCMO) on the island of Baengnyeongdo, off the west coast of the Korean Peninsula. Both islands were found to be influenced by continental sources regardless of season and year. Average values for all of the measured NCCN at 0.2, 0.6 and 1.0 % supersaturations (S), NCN, and geometric mean diameter (Dg) from both islands were in the range of 1043–3051 cm−3, 2076–4360 cm−3, 2713–4694 cm−3, 3890–5117 cm−3 and 81–98 nm, respectively. Although the differences in Dg and NCN were small between Gosan and BCMO, NCCN at various S was much higher at the latter, which is closer to China. Most of the aerosols were internally mixed and no notable differences in hygroscopicity were found between the days of strong pollution influence and the non-pollution days for both islands. During the 2008 and 2009 campaigns, critical supersaturation for cloud nucleation (Sc) for selected particle sizes was measured. Particles of 100 nm diameters had mean Sc of 0.19 ± 0.02 % during 2008 and those of 81 and 110 nm diameters had mean Sc of 0.26 ± 0.07 % and 0.17 ± 0.04 %, respectively, during 2009. Hygroscopicity parameters estimated from the measured Sc were mostly higher than the ones from the measured hygroscopic growth at ~90 % RH. For the 2008 campaign, NCCN at 0.2, 0.6 and 1.0 % S were predicted based on the measured dry particle size distribution and various ways of representing aerosol hygroscopicity. The best closure was obtained when temporally varying and size-resolved hygroscopicity information from HTDMA was used, for which the average relative deviations from the measured values were 19 % for 1.0 % S and 28 % for 0.2 % S. Prescribing a constant hygroscopicity parameter suggested in literature (κ = 0.3) for all sizes and time resulted in the average relative deviations, 25–40 %. When constant hygroscopicity was assumed, the relative deviation tended to increase with decreasing NCCN, which was accompanied by increase of sub-100 nm fraction. These results suggest that hygroscopicity information for aerosols of diameters smaller than 100 nm is crucial for more accurate prediction of NCCN.


2003 ◽  
Vol 3 (6) ◽  
pp. 2183-2205 ◽  
Author(s):  
P. Tunved ◽  
H.-C. Hansson ◽  
M. Kulmala ◽  
P. Aalto ◽  
Y. Viisanen ◽  
...  

Abstract. Size distribution measurements performed at five different stations have been investigated during a one-year period between 01 June 2000 and 31 May 2001 with focus on diurnal, seasonal and geographical differences of size distribution properties. The stations involved cover a large geographical area ranging from the Finnish Lapland (67º N) down to southern Sweden (56º N) in the order Värriö, Pallas, Hyytiälä, Aspvreten and Vavihill. The shape of the size distribution is typically bimodal during winter with a larger fraction of accumulation mode particles compared to the other seasons. Highest Aitken mode concentration is found during summer and spring during the year of study. The maximum of nucleation events occur during the spring months at all stations. Nucleation events occur during other months as well, although not as frequently. Large differences were found between different categories of stations. Northerly located stations such as Pallas and Värriö presented well-separated Aitken and accumulation modes, while the two modes often overlap significantly at the two southernmost stations Vavihill and Aspvreten. A method to cluster trajectories was used to analyse the impact of long-range transport on the observed aerosol properties. Clusters of trajectories arriving from the continent were clearly associated with size distributions shifted towards the accumulation mode. This feature was more pronounced the further south the station was located. Marine- or Arctic-type clusters were associated with large variability in the nuclei size ranges. A quasi-lagrangian approach was used to investigate transport related changes in the aerosol properties. Typically, an increase in especially Aitken mode concentrations was observed when advection from the north occurs, i.e. allowing more continental influence on the aerosol when comparing the different measurement sites. When trajectory clusters arrive to the stations from SW, a gradual decrease in number concentration is experienced in all modes as latitude of measurement site increases.


Sign in / Sign up

Export Citation Format

Share Document