scholarly journals The mixing state of carbonaceous aerosol particles in Northern and Southern California measured during CARES and CalNex 2010

2012 ◽  
Vol 12 (7) ◽  
pp. 18419-18457 ◽  
Author(s):  
J. F. Cahill ◽  
K. Suski ◽  
J. H. Seinfeld ◽  
R. A. Zaveri ◽  
K. A. Prather

Abstract. Carbonaceous aerosols impact climate directly by scattering and absorbing radiation, and hence play a major, although highly uncertain, role in global radiative forcing. Commonly, ambient carbonaceous aerosols are internally mixed with secondary species such as nitrate, sulfate, and ammonium, which influences their optical properties, hygroscopicity, and atmospheric lifetime, thus impacting climate forcing. Aircraft-aerosol time-of-flight mass spectrometry (A-ATOFMS), which measures single-particle mixing state, was used to determine the fraction of organic and soot aerosols that are internally mixed and the variability of their mixing state in California during the Carbonaceous Aerosols and Radiative Effects Study (CARES) and the Research at the Nexus of Air Quality and Climate Change (CalNex) field campaigns in the late spring and early summer of 2010. Nearly 88% of all A-ATOFMS measured particles (100–1000 nm in diameter) were internally mixed with secondary species, with 96% and 75% of particles internally mixed with nitrate and/or sulfate in Southern and Northern California, respectively. Even though atmospheric particle composition in both regions was primarily influenced by urban sources, the mixing state was found to vary greatly, with nitrate and soot being the dominant species in Southern California, and sulfate and organic carbon in Northern California. Furthermore, mixing state varied temporally in Northern California, with soot becoming the prevalent particle type towards the end of the study as regional pollution levels increased. The results from these studies demonstrate that the majority of ambient carbonaceous particles in California are internally mixed and are heavily influenced by secondary species that are most prevalent in the particular region. Based on these findings, considerations of regionally dominant sources and secondary species, as well as temporal variations of aerosol physical and optical properties, will be required to obtain more accurate predictions of the climate impacts of aerosol in California.

2012 ◽  
Vol 12 (22) ◽  
pp. 10989-11002 ◽  
Author(s):  
J. F. Cahill ◽  
K. Suski ◽  
J. H. Seinfeld ◽  
R. A. Zaveri ◽  
K. A. Prather

Abstract. Carbonaceous aerosols impact climate directly by scattering and absorbing radiation, and hence play a major, although highly uncertain, role in global radiative forcing. Commonly, ambient carbonaceous aerosols are internally mixed with secondary species such as nitrate, sulfate, and ammonium, which influences their optical properties, hygroscopicity, and atmospheric lifetime, thus impacting climate forcing. Aircraft-aerosol time-of-flight mass spectrometry (A-ATOFMS), which measures single-particle mixing state, was used to determine the fraction of organic and soot aerosols that are internally mixed and the variability of their mixing state in California during the Carbonaceous Aerosols and Radiative Effects Study (CARES) and the Research at the Nexus of Air Quality and Climate Change (CalNex) field campaigns in the late spring and early summer of 2010. Nearly 88% of all A-ATOFMS measured particles (100–1000 nm in diameter) were internally mixed with secondary species, with 96% and 75% of particles internally mixed with nitrate and/or sulfate in southern and northern California, respectively. Even though atmospheric particle composition in both regions was primarily influenced by urban sources, the mixing state was found to vary greatly, with nitrate and soot being the dominant species in southern California, and sulfate and organic carbon in northern California. Furthermore, mixing state varied temporally in northern California, with soot becoming the prevalent particle type towards the end of the study as regional pollution levels increased. The results from these studies demonstrate that the majority of ambient carbonaceous particles in California are internally mixed and are heavily influenced by secondary species that are most prevalent in the particular region. Based on these findings, considerations of regionally dominant sources and secondary species, as well as temporal variations of aerosol physical and optical properties, will be required to obtain more accurate predictions of the climate impacts of aerosol in California.


2014 ◽  
Vol 20 (3) ◽  
pp. 748-759 ◽  
Author(s):  
Jiangtao Zhu ◽  
Peter A. Crozier ◽  
Peter Ercius ◽  
James R. Anderson

AbstractMonochromated electron energy-loss spectroscopy (EELS) is employed to determine the optical properties of carbonaceous aerosols from the infrared to the ultraviolet region of the spectrum. It is essential to determine their optical properties to understand their accurate contribution to radiative forcing for climate change. The influence of surface and interface plasmon effects on the accuracy of dielectric data determined from EELS is discussed. Our measurements show that the standard thin film formulation of Kramers−Kronig analysis can be employed to make accurate determination of the dielectric function for carbonaceous particles down to about 40 nm in size. The complex refractive indices of graphitic and amorphous carbon spherules found in the atmosphere were determined over the wavelength range 200–1,200 nm. The graphitic carbon was strongly absorbing black carbon, whereas the amorphous carbon shows a more weakly absorbing brown carbon profile. The EELS approach provides an important tool for exploring the variation in optical properties of atmospheric carbon.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Dantong Liu ◽  
Cenlin He ◽  
Joshua P. Schwarz ◽  
Xuan Wang

Abstract Light-absorbing carbonaceous aerosols (LACs), including black carbon and light-absorbing organic carbon (brown carbon, BrC), have an important role in the Earth system via heating the atmosphere, dimming the surface, modifying the dynamics, reducing snow/ice albedo, and exerting positive radiative forcing. The lifecycle of LACs, from emission to atmospheric evolution further to deposition, is key to their overall climate impacts and uncertainties in determining their hygroscopic and optical properties, atmospheric burden, interactions with clouds, and deposition on the snowpack. At present, direct observations constraining some key processes during the lifecycle of LACs (e.g., interactions between LACs and hydrometeors) are rather limited. Large inconsistencies between directly measured LAC properties and those used for model evaluations also exist. Modern models are starting to incorporate detailed aerosol microphysics to evaluate transformation rates of water solubility, chemical composition, optical properties, and phases of LACs, which have shown improved model performance. However, process-level understanding and modeling are still poor particularly for BrC, and yet to be sufficiently assessed due to lack of global-scale direct measurements. Appropriate treatments of size- and composition-resolved processes that influence both LAC microphysics and aerosol–cloud interactions are expected to advance the quantification of aerosol light absorption and climate impacts in the Earth system. This review summarizes recent advances and up-to-date knowledge on key processes during the lifecycle of LACs, highlighting the essential issues where measurements and modeling need improvement.


2019 ◽  
Vol 19 (15) ◽  
pp. 10433-10446 ◽  
Author(s):  
Hua Yu ◽  
Weijun Li ◽  
Yangmei Zhang ◽  
Peter Tunved ◽  
Manuel Dall'Osto ◽  
...  

Abstract. Interaction of anthropogenic particles with radiation and clouds plays an important role in Arctic climate change. The mixing state of aerosols is a key parameter to influence aerosol radiation and aerosol–cloud interactions. However, little is known of this parameter in the Arctic, preventing an accurate representation of this information in global models. Here we used transmission electron microscopy with energy-dispersive X-ray spectrometry, scanning electron microscopy, nanoscale secondary ion mass spectrometry, and atomic forces microscopy to determine the size and mixing state of individual sulfate and carbonaceous particles at 100 nm to 2 µm collected in the Svalbard Archipelago in summer. We found that 74 % by number of non-sea-salt sulfate particles were coated with organic matter (OM); 20 % of sulfate particles also had soot inclusions which only appeared in the OM coating. The OM coating is estimated to contribute 63 % of the particle volume on average. To understand how OM coating influences optical properties of sulfate particles, a Mie core–shell model was applied to calculate optical properties of individual sulfate particles. Our result shows that the absorption cross section of individual OM-coated particles significantly increased when assuming the OM coating as light-absorbing brown carbon. Microscopic observations here suggest that OM modulates the mixing structure of fine Arctic sulfate particles, which may determine their hygroscopicity and optical properties.


2021 ◽  
Vol 21 (10) ◽  
pp. 8273-8292
Author(s):  
Siqi Hou ◽  
Di Liu ◽  
Jingsha Xu ◽  
Tuan V. Vu ◽  
Xuefang Wu ◽  
...  

Abstract. Carbonaceous aerosol is a dominant component of fine particles in Beijing. However, it is challenging to apportion its sources. Here, we applied a newly developed method which combined radiocarbon (14C) with organic tracers to apportion the sources of fine carbonaceous particles at an urban (IAP) and a rural (PG) site of Beijing. PM2.5 filter samples (24 h) were collected at both sites from 10 November to 11 December 2016 and from 22 May to 24 June 2017. 14C was determined in 25 aerosol samples (13 at IAP and 12 at PG) representing low pollution to haze conditions. Biomass burning tracers (levoglucosan, mannosan, and galactosan) in the samples were also determined using gas chromatography–mass spectrometry (GC-MS). Higher contributions of fossil-derived OC (OCf) were found at the urban site. The OCf / OC ratio decreased in the summer samples (IAP: 67.8 ± 4.0 % in winter and 54.2 ± 11.7 % in summer; PG: 59.3 ± 5.7 % in winter and 50.0 ± 9.0 % in summer) due to less consumption of coal in the warm season. A novel extended Gelencsér (EG) method incorporating the 14C and organic tracer data was developed to estimate the fossil and non-fossil sources of primary and secondary OC (POC and SOC). It showed that fossil-derived POC was the largest contributor to OC (35.8 ± 10.5 % and 34.1 ± 8.7 % in wintertime for IAP and PG, 28.9 ± 7.4 % and 29.1 ± 9.4 % in summer), regardless of season. SOC contributed 50.0 ± 12.3 % and 47.2 ± 15.5 % at IAP and 42.0 ± 11.7 % and 43.0 ± 13.4 % at PG in the winter and summer sampling periods, respectively, within which the fossil-derived SOC was predominant and contributed more in winter. The non-fossil fractions of SOC increased in summer due to a larger biogenic component. Concentrations of biomass burning OC (OCbb) are resolved by the extended Gelencsér method, with average contributions (to total OC) of 10.6 ± 1.7 % and 10.4 ± 1.5 % in winter at IAP and PG and 6.5 ± 5.2 % and 17.9 ± 3.5 % in summer, respectively. Correlations of water-insoluble OC (WINSOC) and water-soluble OC (WSOC) with POC and SOC showed that although WINSOC was the major contributor to POC, a non-negligible fraction of WINSOC was found in SOC for both fossil and non-fossil sources, especially during winter. In summer, a greater proportion of WSOC from non-fossil sources was found in SOC. Comparisons of the source apportionment results with those obtained from a chemical mass balance model were generally good, except for the cooking aerosol.


2013 ◽  
Vol 13 (18) ◽  
pp. 9337-9350 ◽  
Author(s):  
A. Cazorla ◽  
R. Bahadur ◽  
K. J. Suski ◽  
J. F. Cahill ◽  
D. Chand ◽  
...  

Abstract. Estimating the aerosol contribution to the global or regional radiative forcing can take advantage of the relationship between the spectral aerosol optical properties and the size and chemical composition of aerosol. Long term global optical measurements from observational networks or satellites can be used in such studies. Using in-situ chemical mixing state measurements can help us to constrain the limitations of such estimates. In this study, the Absorption Ångström Exponent (AAE) and the Scattering Ångström Exponent (SAE) derived from 10 operational AERONET sites in California are combined for deducing chemical speciation based on wavelength dependence of the optical properties. In addition, in-situ optical properties and single particle chemical composition measured during three aircraft field campaigns in California between 2010 and 2011 are combined in order to validate the methodology used for the estimates of aerosol chemistry using spectral optical properties. Results from this study indicate a dominance of mixed types in the classification leading to an underestimation of the primary sources, however secondary sources are better classified. The distinction between carbonaceous aerosols from fossil fuel and biomass burning origins is not clear, since their optical properties are similar. On the other hand, knowledge of the aerosol sources in California from chemical studies help to identify other misclassification such as the dust contribution.


2018 ◽  
Vol 10 (10) ◽  
pp. 1634 ◽  
Author(s):  
Li Liu ◽  
Michael Mishchenko

This paper provides a thorough modeling-based overview of the scattering and radiative properties of a wide variety of morphologically complex carbonaceous aerosols. Using the numerically-exact superposition T-matrix method, we examine the absorption enhancement, absorption Ångström exponent (AAE), backscattering linear depolarization ratio (LDR), and scattering matrix elements of black-carbon aerosols with 11 different model morphologies ranging from bare soot to completely embedded soot–sulfate and soot–brown carbon mixtures. Our size-averaged results show that fluffy soot particles absorb more light than compact bare-soot clusters. For the same amount of absorbing material, the absorption cross section of internally mixed soot can be more than twice that of bare soot. Absorption increases as soot accumulates more coating material and can become saturated. The absorption enhancement is affected by particle size, morphology, wavelength, and the amount of coating. We refute the conventional belief that all carbonaceous aerosols have AAEs close to 1.0. Although LDRs caused by bare soot and certain carbonaceous particles are rather weak, LDRs generated by other soot-containing aerosols can reproduce strong depolarization measured by Burton et al. for aged smoke. We demonstrate that multi-wavelength LDR measurements can be used to identify the presence of morphologically complex carbonaceous particles, although additional observations can be needed for full characterization. Our results show that optical constants of the host/coating material can significantly influence the scattering and absorption properties of soot-containing aerosols to the extent of changing the sign of linear polarization. We conclude that for an accurate estimate of black-carbon radiative forcing, one must take into account the complex morphologies of carbonaceous aerosols in remote sensing studies as well as in atmospheric radiation computations.


2021 ◽  
Vol 21 (12) ◽  
pp. 9417-9440
Author(s):  
Huihui Wu ◽  
Jonathan W. Taylor ◽  
Justin M. Langridge ◽  
Chenjie Yu ◽  
James D. Allan ◽  
...  

Abstract. Seasonal biomass burning (BB) over West Africa is a globally significant source of carbonaceous particles in the atmosphere, which have important climate impacts but are poorly constrained. Here, the evolution of smoke aerosols emitted from flaming-controlled burning of agricultural waste and wooded savannah in the Senegal region was characterized over a timescale of half-day advection from the source during the MOYA-2017 (Methane Observation Yearly Assessment-2017) aircraft campaign. Plumes from such fire types are rich in black carbon (BC) emissions. Concurrent measurements of chemical composition, organic aerosol (OA) oxidation state, bulk aerosol size and BC mixing state reveal that emitted BB submicron aerosols changed dramatically with time. Various aerosol optical properties (e.g. absorption Ångström exponent – AAE – and mass absorption coefficients – MACs) also evolved with ageing. In this study, brown carbon (BrC) was a minor fractional component of the freshly emitted BB aerosols (< 0.5 h), but the increasing AAE with particle age indicates that BrC formation dominated over any loss process over the first ∼ 12 h of plume transport. Using different methods, the fractional contribution of BrC to total aerosol absorption showed an increasing trend with time and was ∼ 18 %–31 % at the optical wavelength of 405 nm after half-day transport. The generated BrC was found to be positively correlated with oxygenated and low-volatility OA, likely from the oxidation of evaporated primary OA and secondary OA formation. We found that the evolution of BrC with particle age was different in this region compared with previous BB field studies that mainly focused on emissions from smouldering fires, which have shown a high contribution from BrC at the source and BrC net loss upon ageing. This study suggests an initial stage of BrC absorption enhancement during the evolution of BB smoke. Secondary processing is the dominant contributor to BrC production in this BB region, in contrast to the primary emission of BrC previously reported in other BB studies. The total aerosol absorption normalized to BC mass (MACmeas-BC) was also enhanced with ageing due to the lensing effect of increasingly thick coatings on BC and the absorption by BrC. The effect of ageing on aerosol absorption, represented by the absorption enhancement (EAbs-MAC), was estimated over timescales of hours. MOYA-2017 provides novel field results. The comparisons between MOYA-2017 and previous field studies imply that the evolution of absorbing aerosols (BC and BrC) after emission varies with source combustion conditions. Different treatments of absorbing aerosol properties from different types of fires and their downwind evolution should be considered when modelling regional radiative forcing. These observational results will be very important for predicting climate effects of BB aerosol in regions controlled by flaming burning of agricultural waste and savannah-like biomass fuels.


Sign in / Sign up

Export Citation Format

Share Document