scholarly journals Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain

2013 ◽  
Vol 13 (8) ◽  
pp. 20885-20922 ◽  
Author(s):  
H. J. Liu ◽  
C. S. Zhao ◽  
B. Nekat ◽  
N. Ma ◽  
A. Wiedensohler ◽  
...  

Abstract. Hygroscopic growth of aerosol particles is of significant importance in quantifying the aerosol radiative effect in the atmosphere. In this study, hygroscopic properties of ambient particles are investigated based on particle chemical composition at a suburban site in the North China Plain during the HaChi campaign (Haze in China) in summer 2009. The size-segregated aerosol particulate mass concentration as well as the particle components such as inorganic ions, organic carbon and water-soluble organic carbon (WSOC) is identified from aerosol particle samples collected with a 10-stage impactor. An iterative algorithm is developed to evaluate the hygroscopicity parameter κ from the measured particle chemical compositions. During the HaChi summer campaign, almost half of the mass concentration of particles between 150 nm and 1 μm is contributed by inorganic species. Organic matter (OM) is abundant in ultrafine particles, and 77% of the particulate mass with diameter (Dp) around 30 nm is composed of OM. A large fraction of coarse particle mass is undetermined and is assumed to be insoluble mineral dust and liquid water. The campaign average size distribution of κ values shows three distinct modes: the less hygroscopic mode (Dp < 150 nm) with κ slightly above 0.2, the highly hygroscopic mode (150 nm 1 μm) with κ about 0.1. The peak of the κ curve appears around 450 nm with a maximum value of 0.35. The derived κ values are consistent with results measured with a High Humidity Tandem Differential Mobility Analyzer within the size range of 50 nm to 250 nm. Inorganics are the predominant species contributing to particle hygroscopicity, especially for particles between 150 nm and 1 μm. For example, NH4NO3, H2SO4, NH4HSO4 and (NH4)2SO4 account for nearly 90% of κ for particles around 900 nm. For ultrafine particles, WSOC plays a critical role in particle hygroscopicity due to the predominant mass fraction of OM in ultrafine particles. 52% of κ is contributed by WSOC for particles around 30 nm. Aerosol particles are more hygroscopic during daytime, which can result from the diurnal evolution of planetary boundary layer, photochemical aging process during daytime and enhanced elemental carbon emission at night. κ is highly correlated with mass fractions of SO42−, NO3− and NH4+ for all sampled particles as well as with the mass fraction of WSOC for particles less than 100 nm. A parameterization scheme of κ is developed using mass fractions of SO42−, NO3−, NH4+ and WSOC due to their high correlations with κ, and κ calculated from parameterization agrees well with κ derived from the particle chemical composition. Further analysis shows that the parameterization scheme is applicable to other aerosol studies in China.

2014 ◽  
Vol 14 (5) ◽  
pp. 2525-2539 ◽  
Author(s):  
H. J. Liu ◽  
C. S. Zhao ◽  
B. Nekat ◽  
N. Ma ◽  
A. Wiedensohler ◽  
...  

Abstract. Hygroscopic growth of aerosol particles is of significant importance in quantifying the aerosol radiative effect in the atmosphere. In this study, hygroscopic properties of ambient particles are investigated based on particle chemical composition at a suburban site in the North China Plain during the HaChi campaign (Haze in China) in summer 2009. The size-segregated aerosol particulate mass concentration as well as the particle components such as inorganic ions, organic carbon and water-soluble organic carbon (WSOC) are identified from aerosol particle samples collected with a ten-stage impactor. An iterative algorithm is developed to evaluate the hygroscopicity parameter κ from the measured chemical composition of particles. During the HaChi summer campaign, almost half of the mass concentration of particles between 150 nm and 1 μm is contributed by inorganic species. Organic matter (OM) is abundant in ultrafine particles, and 77% of the particulate mass with diameter (Dp) of around 30 nm is composed of OM. A large fraction of coarse particle mass is undetermined and is assumed to be insoluble mineral dust and liquid water. The campaign's average size distribution of κ values shows three distinct modes: a less hygroscopic mode (Dp < 150 nm) with κ slightly above 0.2, a highly hygroscopic mode (150 nm < Dp < 1 μm) with κ greater than 0.3 and a nearly hydrophobic mode (Dp > 1 μm) with κ of about 0.1. The peak of the κ curve appears around 450 nm with a maximum value of 0.35. The derived κ values are consistent with results measured with a high humidity tandem differential mobility analyzer within the size range of 50–250 nm. Inorganics are the predominant species contributing to particle hygroscopicity, especially for particles between 150 nm and 1 μm. For example, NH4NO3, H2SO4, NH4HSO4 and (NH4)2SO4 account for nearly 90% of κ for particles of around 900 nm. For ultrafine particles, WSOC plays a critical role in particle hygroscopicity due to the predominant mass fraction of OM in ultrafine particles. WSOC for particles of around 30 nm contribute 52% of κ. Aerosol hygroscopicity is related to synoptic transport patterns. When southerly wind dominates, particles are more hygroscopic; when northerly wind dominates, particles are less hygroscopic. Aerosol hygroscopicity also has a diurnal variation, which can be explained by the diurnal evolution of planetary boundary layer, photochemical aging processes during daytime and enhanced black carbon emission at night. κ is highly correlated with mass fractions of SO42−, NO3− and NH4+ for all sampled particles as well as with the mass fraction of WSOC for particles of less than 100 nm. A parameterization scheme for κ is developed using mass fractions of SO42−, NO3−, NH4+ and WSOC due to their high correlations with κ, and κ calculated from the parameterization agrees well with κ derived from the particle's chemical composition. Further analysis shows that the parameterization scheme is applicable to other aerosol studies in China.


2021 ◽  
Author(s):  
Jingnan Shi ◽  
Juan Hong ◽  
Nan Ma ◽  
Qingwei Luo ◽  
Hanbing Xu ◽  
...  

&lt;p&gt;Simultaneous measurements of aerosol hygroscopicity and chemical composition were performed at a suburban site in the North China Plain in winter 2018 using a self-assembled hygroscopic tandem differential mobility analyzer (H-TDMA) and a capture-vaporizer time-of-flight aerosol chemical speciation monitor (CV-ToF-ACSM), respectively. During the experimental period, aerosol particles usually show an external mixture in terms of hygroscopicity, with a less hygroscopic particles mode (LH) and a more hygroscopic mode (MH). The average ensemble mean hygroscopicity parameter (&amp;#954;&lt;sub&gt;mean&lt;/sub&gt;) are 0.16, 0.18, 0.16, and 0.15 for 60, 100, 150, and 200 nm particles, respectively. Two episodes with different RH/T conditions and secondary aerosol formations are distinguished. Higher aerosol hygroscopicity is observed for all measured sizes in the high RH episode (HRH) than in the low RH episode (LRH). In LRH, &amp;#954; decreases as the particle size increases, which may be explained by the large contribution of non- or less-hygroscopic primary compounds in large particles due to the enhanced domestic heating emissions at low temperature. The number fraction of LH mode at 200 nm even exceeds 50%. Closure analysis is carried out between the HTDMA-measured &amp;#954; and the ACSM-derived hygroscopicity using different approximations for the hygroscopic parameters of organic compounds (&amp;#954;&lt;sub&gt;org&lt;/sub&gt;). The results indicate that &amp;#954;&lt;sub&gt;org&lt;/sub&gt; is less sensitive towards the variation of its oxidation level under HRH conditions but has a stronger O: C-dependency under LRH conditions. The difference in the chemical composition and their corresponding physical properties under different RH/T conditions reflects potentially different formation mechanisms of secondary organic aerosols at those two distinct episodes.&lt;/p&gt;


2017 ◽  
Vol 164 ◽  
pp. 259-269 ◽  
Author(s):  
Simonas Kecorius ◽  
Nan Ma ◽  
Monique Teich ◽  
Dominik van Pinxteren ◽  
Shenglan Zhang ◽  
...  

2016 ◽  
Author(s):  
Yi Zhu ◽  
Jiping Zhang ◽  
Junxia Wang ◽  
Wenyuan Chen ◽  
Yiqun Han ◽  
...  

Abstract. The North China Plain (NCP) has been experiencing severe air pollution problems with rapid economic growth and urbanisation. Many field and model studies have examined the distribution of air pollutants in the NCP, but convincing results have not been achieved mainly due to a lack of direct measurements of pollutants over large areas. Here, we employed a mobile laboratory to observe the main air pollutants in a large part of the NCP from June 11 to July 15, 2013. High median concentrations of sulphur dioxide (SO2) (12 ppb), nitrogen oxides (NOx) (NO + NO2; 452 ppb), carbon monoxide (CO) (956 ppb), black carbon (BC; 5.5 μg m−3) and ultrafine particles (28 350 cm−3) were measured. Most of the high values, i.e., 95 percentile concentrations, were distributed near large cities, suggesting the influence of local emissions. In addition, we analysed the regional transport of SO2 and CO, relatively long-lived pollutants, based on our mobile observations together with wind field and satellite data analyses. Our results suggested that, for border areas of the NCP, wind from outside would have a diluting effect on pollutants, while south winds would bring in pollutants accumulated during transport through other parts of the NCP. For the central NCP, the concentrations of pollutants were likely to remain at high levels, partly due to the influence of regional transport by prevalent south–north winds over the NCP and partly by local emissions.


2020 ◽  
Author(s):  
Yaqing Zhou ◽  
Nan Ma ◽  
Zhibin Wang ◽  
Linhong Xie ◽  
Baofang Xie ◽  
...  

&lt;p&gt;Effective density is one of the most important physical property of atmospheric aerosols, which is link to particle formation and aging process. Combined characterization of density, chemical composition and source evolution of aerosol is crucial for understanding their interactions and effects on environment and climate. The effective density of sub-micrometer aerosol particles was investigate at a heavily polluted rural site in the North China Plain from 16 October to 1 November 2019. A tandem technique coupling a Centrifugal Particle Mass Analyzer (CPMA) with a differential mobility analyzer (DMA) and a Condensation Particle Counter (CPC) were used to determine the effective density of ambient aerosol particles with selected diameters of 50, 100, 150, 220 and 300 nm. The measured effective density is higher during clean period than pollution period, with average values ranged from 1.13 to 1.36 g/cm&lt;sup&gt;3&lt;/sup&gt;, which is lower than the reported values in Shanghai and Beijing. Similar diurnal cycles of effective density are observed for the five diameters, that is, started to increase in the morning and reached a peak in the afternoon around 13:00-16:00, then decreased and remained at a relative low value during the night. Two valleys are found during morning and evening rush hours for particle diameter smaller than 150 nm, which is likely to stem from the higher fresh emissions such as BC, BBOA and HOA. In most cases, measured particle effective density shows a single-modal distribution. But during clean days, bimodal distribution was observed with an extra low-density mode peaking at around 0.5 -1.0 g/cm&lt;sup&gt;3&lt;/sup&gt;, which may be attributed to freshly emitted soot particles.&lt;/p&gt;


2011 ◽  
Vol 11 (7) ◽  
pp. 3479-3494 ◽  
Author(s):  
P. F. Liu ◽  
C. S. Zhao ◽  
T. Göbel ◽  
E. Hallbauer ◽  
A. Nowak ◽  
...  

Abstract. The hygroscopic properties of submicron aerosol particles were determined at a suburban site (Wuqing) in the North China Plain among a cluster of cities during the period 17 July to 12 August, 2009. A High Humidity Tandem Differential Mobility Analyser (HH-TDMA) instrument was applied to measure the hygroscopic growth factor (GF) at 90%, 95% and 98.5% relative humidity (RH) for particles with dry diameters between 50 and 250 nm. The probability distribution of GF (GF-PDF) averaged over the period shows a distinct bimodal pattern, namely, a dominant more-hygroscopic (MH) group and a smaller nearly-hydrophobic (NH) group. The MH group particles were highly hygroscopic, and their GF was relatively constant during the period with average values of 1.54 ± 0.02, 1.81 ± 0.04 and 2.45 ± 0.07 at 90%, 95% and 98.5% RH (D0 = 100 nm), respectively. The NH group particles grew very slightly when exposed to high RH, with GF values of 1.08 ± 0.02, 1.13 ± 0.06 and 1.24 ± 0.13 respectively at 90%, 95% and 98.5% RH (D0 = 100 nm). The hygroscopic growth behaviours at different RHs were well represented by a single-parameter Köhler model. Thus, the calculation of GF as a function of RH and dry diameter could be facilitated by an empirical parameterization of κ as function of dry diameter. A strong diurnal pattern in number fraction of different hygroscopic groups was observed. The average number fraction of NH particles during the day was about 8%, while during the nighttime fractions up to 20% were reached. Correspondingly, the state of mixing in terms of water uptake varied significantly during a day. Simulations using a particle-resolved aerosol box model (PartMC-MOSAIC) suggest that the diurnal variations of aerosol hygroscopicity and mixing state were mainly caused by the evolution of the atmospheric mixing layer. The shallow nocturnal boundary layer during the night facilitated the accumulation of freshly emitted carbonaceous particles (mainly hydrophobic) near the surface while in the morning turbulence entrained the more aged and more hygroscopic particles from aloft and diluted the NH particles near the surface resulting in a decrease in the fraction of NH particles.


2022 ◽  
Author(s):  
Jingnan Shi ◽  
Juan Hong ◽  
Nan Ma ◽  
Qingwei Luo ◽  
Yao He ◽  
...  

Abstract. Atmospheric processes, including both primary emissions and secondary formation, may exert complex effects on aerosol hygroscopicity, which is of significant importance in understanding and quantifying the effect of aerosols on climate and human health. In order to explore the influence of local emissions and secondary formation processes on aerosol hygroscopicity, we investigated the hygroscopic properties of submicron aerosol particles at a rural site in the North China Plain (NCP) in winter 2018. This was conducted by simultaneous measurements of aerosol hygroscopicity and chemical composition, using a self-assembled hygroscopic tandem differential mobility analyzer (HTDMA) and a capture-vaporizer time-of-flight aerosol chemical speciation monitor (CV-ToF-ACSM). The hygroscopicity results showed that the particles during the entire campaign were mainly externally mixed, with a more hygroscopic (MH) mode and a less hygroscopic (LH) particles mode. The mean hygroscopicity parameter values (κmean) derived from hygroscopicity measurements for particles at 60, 100, 150, and 200 nm were 0.16, 0.18, 0.16, and 0.15, respectively. During this study, we classified two distinct episodes with different RH/T conditions, indicative of different primary emissions and secondary formation processes. It was observed that aerosols at all measured sizes were more hygroscopic under the high RH (HRH) episode than those under the low RH (LRH) episode. During the LRH, κ decreased with increasing particle size, which may be explained by the enhanced domestic heating at low temperature, causing large emissions of non- or less-hygroscopic primary aerosols. This is particularly obvious for 200 nm particles, with a dominant number fraction (> 50 %) of LH mode particles. Using O : C-dependent hygroscopic parameters of secondary organic compounds (κSOA), closure analysis between the HTDMA_measured κ and the ACSM_derived κ was carried out. The results showed that κSOA under the LRH episode was less sensitive to the changes in organic oxidation level, while κSOA under the HRH had a relatively stronger dependency on the organic O : C. This feature suggests that the different sources and aerosol evolution processes, partly resulting from the variation in atmospheric RH/T conditions, may lead to significant changes in aerosol chemical composition, which will further influence their corresponding physical properties.


2021 ◽  
Vol 21 (23) ◽  
pp. 17631-17648
Author(s):  
Yuting Zhang ◽  
Hang Liu ◽  
Shandong Lei ◽  
Wanyun Xu ◽  
Yu Tian ◽  
...  

Abstract. The variability of the mixing state of refractory black carbon aerosol (rBC) and the corresponding complicated light absorption capacity imposes great uncertainty for its climate forcing assessment. In this study, field observations using a single-particle soot photometer (SP2) were conducted to investigate the mixing state of rBC under different meteorological conditions at a rural site on the North China Plain. The results showed that the hourly mass concentration of rBC during the observation periods was 2.6±1.5 µg m−3 on average, with a moderate increase (3.1±0.9) during fog episodes. The mass-equivalent size distribution of rBC exhibited an approximately lognormal distribution with a mass median diameter (MMD) of 213 nm. We found that the count median diameter (CMD) of rBC particles during snowfall episodes was larger than that before snowfall, and the number of rBC particles with Dc<121 nm were reduced by 28.4 % after snow. This may indicate that rBC-containing particles with small core sizes (Dc) were much more effectively removed by snow with light snow intensity (0.23 mm h−1). Based on the Mie scattering theory simulation, the relative and absolute coating thicknesses of rBC-containing particles were estimated to be ∼1.6 and ∼52 nm for the rBC core with a mass-equivalent diameter (Dc) of 170 to 190 nm, respectively, which indicates that most of the rBC-containing particles were thinly coated. Furthermore, a moderate light absorption enhancement (Eabs=1.3) and relatively low absorption cross section (MAC = 5.5 m2 g−1) at 880 nm were observed at the Gucheng (GC) site in winter compared with other typical rural sites. The relationship between the microphysical properties of rBC and meteorological conditions was also studied. Relatively warm and high-RH environments (RH>50 %, -4∘C<T<4∘C) were more favorable to rBC aging than dry and cold environments (RH<60 %, T<-8∘C). And the increase in ambient RH at the same temperature favors rBC aging. An increasing mass fraction of secondary inorganic aerosols (SIAs; especially sulfate and nitrate) and a decreasing mass fraction of organic aerosols in the environment support the formation of thick coatings by rBC. The RH dependence of absorption enhancement (Eabs) was likely caused by the relative coating thickness (RCT) as supported by the gradual increase in the mass concentration and mass fraction of secondary components as a function of RH in the ambient air. The mass fractions of aqueous-phase formation of secondary components had a limited effect on Eabs under a high-RH environment. The measured rBC concentrations and the mixing state of rBC in different meteorological environments will be useful for evaluating the radiative forcing of rBC in regional climate models.


2021 ◽  
Author(s):  
Guo Li ◽  
Hang Su ◽  
Nan Ma ◽  
Jiangchuan Tao ◽  
Ye Kuang ◽  
...  

High-RH-favored multiphase reactions can significantly change the chemical composition of fine particles and thereby modify their physicochemical properties.


2011 ◽  
Vol 11 (8) ◽  
pp. 22385-22415 ◽  
Author(s):  
W. J. Li ◽  
D. Z. Zhang ◽  
L. Y. Shao ◽  
S. Z. Zhou ◽  
W. X. Wang

Abstract. The North China plain is a region with megacities and huge populations. Aerosols over the highly polluted area have a significant impact on a regional and global climate. In order to investigate the physical and chemical characteristics of aerosol particles in elevated layers there, observations were carried out at the summit of Mt. Tai (1534 m a.s.l) from 19 to 28 April 2010, when the air masses were advected from the east (phase-I: 19–21 April), from the south (phase-II: 22–25 April), and from the northwest (phase-III: 26–28 April). Individual aerosol particles were identified with transmission electron microscopy (TEM), new particle formation (NPF) and growth events were monitored by a wide-range particle spectrometer, and ion concentrations in PM2.5 were analyzed. During phase-I and phase-II, haze layers caused by anthropogenic pollution were observed, and a major number of particles were sulfur-rich (47–49 %). In phase-III, haze disappeared due to the intrusion of cold air from the northwest, and mineral dust particles from deserts were predominant (43 %). NPF followed by particle growth during daytime was more pronounced at upper levels of the haze layers than clear days. Particle growth during daytime resulted in an increase of particle geometric mean diameter from 10–22 nm in the morning to 56–96 nm in the evening. TEM analysis suggests that sulfuric acid and secondary organic compounds should be important factors for particle nucleation and growth. Moreover, the presence of ultrafine and fine anthropogenic particles (e.g., soot, metal, and fly ash) embedded within S-rich particles may indicate their influences on particle nucleation through condensation and enhancement of particle growth through coagulation. Each fine refractory particle can enlarge the sulfate particles by 10–20 nm. Abundant mineral particles in phase-III likely suppressed the NPF processes because a high number of crustal mineral particles in the free troposphere supplied an important surface on which acidic gases or acids condensed.


Sign in / Sign up

Export Citation Format

Share Document