scholarly journals The temporal evolution of three-dimensional lightning parameters and their suitability for thunderstorm tracking and nowcasting

2013 ◽  
Vol 13 (1) ◽  
pp. 2217-2242
Author(s):  
V. K. Meyer ◽  
H. Höller ◽  
H. D. Betz

Abstract. Total lightning (TL) data has been found to provide valuable information about the internal dynamics of a thunderstorm allowing conclusions about its further development as well as indicating potential of thunderstorm-related severe weather at the ground. This paper investigates electrical discharge correlations of strokes and flashes with respect to the temporal evolution of thunderstorms in case studies as well as by statistical means. The recently developed algorithm li-TRAM (tracking and monitoring of lightning-cells, Meyer et al., 2012) has been employed to track and monitor thunderstorms based on three-dimensionally resolved TL lightning data provided as stroke events by the European lightning location network LINET. From statistical investigation of 863 suited thunderstorm life-cycles the cell area turned out to correlate well with (a) the total discharge rate, (b) the in-cloud (IC) discharge rate, and (c) the mean IC discharge height per lightning-cell as identified by li-TRAM. All three parameter correlations consistently show an abrupt change in discharge characteristics around a cell area of 170 km2. Statistical investigations supported by the comparison of three case studies – selected to represent a single storm, a multi-cell and a supercell – strongly suggest that the correlation functions include the temporal evolution as well as the storm type. With the help of volumetric radar data, it can also be suggested that the well defined break observed at 170 km2 marks the region, where the transition occurs from short-lived and rather simple structured single storm cells to better organized, more persistent, and more complex structured thunderstorm forms, e.g. multi-cells and super-cells. All three storm-types experience similar discharge characteristics during their growing and dissipating phases. However, while the poorly organized and short-lived cells preferentially remain small during a short mature phase, mainly the more persistent thunderstorm types develop to sizes above 170 km2 during a pronounced mature stage. At that stage they exhibit on average higher discharge rates at higher altitudes as compared with matured single-cells. With the maximum stroke distance set to 10 km and a flash duration set to 1 s the parameterisation functions found for the stroke rate as function of the cell area has been transformed to a flash rate. The presented study suggests that, with respect to the storm type, stroke and flash correlations can be parameterized. There is also strong evidence, that parameterization functions include the time parameter, so that altogether TL stroke information has good potential to pre-estimate the further evolution (nowcast) of a currently observed storm in an object-oriented thunderstorm nowcasting approach.

2013 ◽  
Vol 13 (10) ◽  
pp. 5151-5161 ◽  
Author(s):  
V. K. Meyer ◽  
H. Höller ◽  
H. D. Betz

Abstract. Total lightning (TL) data have been found to provide valuable information about the internal dynamics of a thunderstorm allowing conclusions about its further development as well as indicating potential of thunderstorm-related severe weather at the ground. This paper investigates electrical discharge correlations of strokes and flashes with respect to the temporal evolution of thunderstorms in case studies as well as by statistical means. The recently developed algorithm li-TRAM (tracking and monitoring of lightning cells, Meyer et al., 2013) has been employed to track and monitor thunderstorms based on three-dimensionally resolved TL data provided as stroke events by the European lightning location network LINET. From statistical investigation of 863 suited thunderstorm life cycles, the cell area turned out to correlate well with (a) the total discharge rate, (b) the in-cloud (IC) discharge rate, and (c) the mean IC discharge height per lightning cell as identified by li-TRAM. All three parameter correlations consistently show an abrupt change in discharge characteristics around a cell area of 170 km2. Statistical investigations supported by the comparison of three case studies – selected to represent a single storm, a multi-cell and a supercell – strongly suggest that the correlation functions include the temporal evolution as well as the storm type. With the help of volumetric radar data, it can also be suggested that the well-defined break observed at 170 km2 marks the region where the transition occurs from short-lived and rather simple structured single storm cells to better organized, more persistent, and more complex structured thunderstorm forms, e.g. multi-cells and supercells. All three storm types experience similar discharge characteristics during their growing and dissipating phases. However, while the poorly organized and short-lived cells preferentially remain small during a short mature phase, mainly the more persistent thunderstorm types develop to sizes above 170 km2 during a pronounced mature stage. At that stage they exhibit on average higher discharge rates at higher altitudes as compared with matured single cells. With the maximum stroke distance set to 10 km and a flash duration set to 1 s, the parameterization functions found for the stroke rate as a function of the cell area have been transformed to a flash rate. The presented study suggests that, with respect to the storm type, stroke and flash correlations can be parameterized. There is also strong evidence that parameterization functions include the time parameter, so that altogether TL stroke information has good potential to pre-estimate the further evolution (nowcast) of a currently observed storm in an object-oriented thunderstorm nowcasting approach.


2019 ◽  
Vol 374 (1786) ◽  
pp. 20190098 ◽  
Author(s):  
Chuan Ku ◽  
Arnau Sebé-Pedrós

Understanding the diversity and evolution of eukaryotic microorganisms remains one of the major challenges of modern biology. In recent years, we have advanced in the discovery and phylogenetic placement of new eukaryotic species and lineages, which in turn completely transformed our view on the eukaryotic tree of life. But we remain ignorant of the life cycles, physiology and cellular states of most of these microbial eukaryotes, as well as of their interactions with other organisms. Here, we discuss how high-throughput genome-wide gene expression analysis of eukaryotic single cells can shed light on protist biology. First, we review different single-cell transcriptomics methodologies with particular focus on microbial eukaryote applications. Then, we discuss single-cell gene expression analysis of protists in culture and what can be learnt from these approaches. Finally, we envision the application of single-cell transcriptomics to protist communities to interrogate not only community components, but also the gene expression signatures of distinct cellular and physiological states, as well as the transcriptional dynamics of interspecific interactions. Overall, we argue that single-cell transcriptomics can significantly contribute to our understanding of the biology of microbial eukaryotes. This article is part of a discussion meeting issue ‘Single cell ecology’.


2019 ◽  
Vol 16 (2) ◽  
pp. 168-180
Author(s):  
Heng-Yu Chang ◽  
Chun-Ai Ma

Purpose As the capital market in China is still developing, several constraints on a Chinese-listed firm’s financing strategy have a direct impact on its financial flexibility. The purpose of this paper is to reconstruct traditional financial flexibility index (FFI) derived from the western context, provide empirical evidence within eastern context by modified FFI and examine how the managerial efficiency of Chinese-listed firms is demonstrated with modified FFI to escort corporate life cycle hypothesis. Design/methodology/approach By tailored FFI to fit the contemporary operations of Chinese-listed firms, this study investigates how managerial efficiency varies across different life stages to demonstrate the moderating power in the firm performance of financially flexible firm. Findings It is found that financially flexible firms in the Chinese stock market generally experience good firm performance, yet the managerial efficiency could gradually be diminishing at their mature stage even firms’ financial flexibility remains consistent with the agency theory. This paper sheds light on the necessity to reexamine the components in financial flexibility based on the eastern context, and provides avenue to further understand the managerial behavior of Chinese listed firms when considering firm life cycles. Research limitations/implications Although it is difficult for this current study to offer the precise weights on each factor in calculating financial flexibility, the judgment matrix method is adopted to at least provide reliable estimates in accordance with Chinese business contexts with less than 10 percent errors in contrast to the actual weights. Practical implications This modified FFI is particularly suitable for Chinese-listed firms under certain unique financial reporting regulations by adjusting a number of weights and factors. This study may help practitioners understand the managerial conduct of publicly listed firms in China. Originality/value The paper constructs a modified FFI with Chinese stock market characteristics embedded, and provides insightful evidence to explain the new pecking order theory by considering the life cycle stage of Chinese-listed companies.


Author(s):  
Aneel Narayanapur ◽  
Pavankumar Naik ◽  
Priya B Kori ◽  
Naseem Kalaburgi ◽  
Rubiya I M ◽  
...  

The detection of plant leaf is an very important factor to prevent serious outbreak. Automatic detection of plant disease is essential research topic. Most plant diseases are caused by fungi, bacteria, and viruses. Fungi are identified primarily from their morphology, with emphasis placed on their reproductive structures. Bacteria are considered more primitive than fungi and generally have simpler life cycles. With few exceptions, bacteria exist as single cells and increase in numbers by dividing into two cells during a process called binary fission Viruses are extremely tiny particles consisting of protein and genetic material with no associated protein. The term disease is usually used only for the destruction of live plants. The developed processing scheme consists of four main steps, first a color transformation structure for the input RGB image is created, this RGB is converted to HSI because RGB is for color generation and his for color descriptor. Then green pixels are masked and removed using specific threshold value, then the image is segmented and the useful segments are extracted, finally the texture statistics is computed. from SGDM matrices. Finally the presence of diseases on the plant leaf is evaluated.


Buildings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 64 ◽  
Author(s):  
Hanaa Dahy

Choosing building materials is usually the stage that follows design in the architectural design process, and is rarely used as a main input and driver for the design of the whole building’s geometries or structures. As an approach to have control over the environmental impact of the applied building materials and their after-use scenarios, an approach has been initiated by the author through a series of research studies, architectural built prototypes, and green material developments. This paper illustrates how sustainable building materials can be a main input in the design process, and how digital fabrication technologies can enable variable controlling strategies over the green materials’ properties, enabling adjustable innovative building spaces with new architectural typologies, aesthetic values, and controlled martial life cycles. Through this, a new type of design philosophy by means of applying sustainable building materials with closed life cycles is created. In this paper, three case studies of research pavilions are illustrated. The pavilions were prefabricated and constructed from newly developed sustainable building materials. The applied materials varied between structural and non-structural building materials, where each had a controlled end-of-life scenario. The application of the bio-based building materials was set as an initial design phase, and the architects here participated within two disciplines: once as designers, and additionally as green building material developers. In all three case studies, Design for Deconstruction (DfD) strategies were applied in different manners, encouraging architects to further follow such suggested approaches.


2011 ◽  
Vol 8 (65) ◽  
pp. 1772-1784 ◽  
Author(s):  
Valentina Rossetti ◽  
Manuela Filippini ◽  
Miroslav Svercel ◽  
A. D. Barbour ◽  
Homayoun C. Bagheri

Filamentous bacteria are the oldest and simplest known multicellular life forms. By using computer simulations and experiments that address cell division in a filamentous context, we investigate some of the ecological factors that can lead to the emergence of a multicellular life cycle in filamentous life forms. The model predicts that if cell division and death rates are dependent on the density of cells in a population, a predictable cycle between short and long filament lengths is produced. During exponential growth, there will be a predominance of multicellular filaments, while at carrying capacity, the population converges to a predominance of short filaments and single cells. Model predictions are experimentally tested and confirmed in cultures of heterotrophic and phototrophic bacterial species. Furthermore, by developing a formulation of generation time in bacterial populations, it is shown that changes in generation time can alter length distributions. The theory predicts that given the same population growth curve and fitness, species with longer generation times have longer filaments during comparable population growth phases. Characterization of the environmental dependence of morphological properties such as length, and the number of cells per filament, helps in understanding the pre-existing conditions for the evolution of developmental cycles in simple multicellular organisms. Moreover, the theoretical prediction that strains with the same fitness can exhibit different lengths at comparable growth phases has important implications. It demonstrates that differences in fitness attributed to morphology are not the sole explanation for the evolution of life cycles dominated by multicellularity.


Author(s):  
Kaspar Andreas Friedrich ◽  
Till Kaz ◽  
Stefan Scho¨nbauer ◽  
Heinz Sander

During fuel cell operation the electrochemical activity often is not homogenous over the electrode area. This may be caused by an non-uniform water content in the membrane, an inhomogeneous temperature distribution, and reactant gradients in the cell. Consequently a variation of the current density over the cell area occurs which tends to result in inferior performance. For in situ measurements of the current density distribution in fuel cell stacks a segmented bipolar plate was developed. The segmented bipolar plate was first tested in single cells with stack endplates to verify the function of all components. The tests showed that the measurement tool works very reliable and accurate. The insight in an operating fuel cell stack via current density distribution measurement is very helpful to investigate interactions between cells. Results can be used to validate models and to optimise stack components, e.g. flow field and manifold design, as well as to detect the best stack operating conditions. By applying segmented bipolar plates as sensor plates for stack system controls an improved performance, safe operation and longer life cycles can be achieved. The developed segmented bipolar plates with integrated current sensors were used to assemble a short stack consisting of 3 cells; each of them having an active area of 25cm2 divided into 49 segments. The design of the bipolar plate proofed very suitable for easy assembling of single cells and stacks. First measurement results show that different current distributions can appear in the cells and these can vary from cell to cell, depending on the operating conditions of the stack. Electrical coupling between the cells was investigated and found to be only marginal for the assembly used.


2006 ◽  
Vol 134 (4) ◽  
pp. 1174-1193 ◽  
Author(s):  
Jonathan E. Martin

Abstract The total quasigeostrophic (QG) vertical motion field is partitioned into transverse and shearwise couplets oriented parallel to, and along, the geostrophic vertical shear, respectively. The physical role played by each of these components of vertical motion in the midlatitude cyclone life cycle is then illustrated by examination of the life cycles of two recently observed cyclones. The analysis suggests that the origin and subsequent intensification of the lower-tropospheric cyclone responds predominantly to column stretching associated with the updraft portion of the shearwise QG vertical motion, which displays a single, dominant, middle-tropospheric couplet at all stages of the cyclone life cycle. The transverse QG omega, associated with the cyclones’ frontal zones, appears only after those frontal zones have been established. The absence of transverse ascent maxima and associated column stretching in the vicinity of the surface cyclone center suggests that the transverse ω plays little role in the initial development stage of the storms examined here. Near the end of the mature stage of the life cycle, however, in what appears to be a characteristic distribution, a transverse ascent maximum along the western edge of the warm frontal zone becomes superimposed with the shearwise ascent maximum that fuels continued cyclogenesis. It is suggested that use of the shearwise/transverse diagnostic approach may provide new and/or supporting insight regarding a number of synoptic processes including the development of upper-level jet/front systems and the nature of the physical distinction between type A and type B cyclogenesis events.


2021 ◽  
Author(s):  
James A Beauchamp ◽  
Obaid U Khurram ◽  
Julius PA Dewald ◽  
CJ Heckman ◽  
Gregory EP Pearcey

Objective: Successive improvements in high density surface electromyography and decomposition techniques have facilitated an increasing yield in decomposed motor unit (MU) spike times. Though these advancements enhance the generalizability of findings and promote the application of MU discharge characteristics to inform the neural control of motor output, limitations remain. Specifically, 1) common approaches for generating smooth estimates of MU discharge rates introduce artifacts in quantification, which may bias findings, and 2) discharge characteristics of large MU populations are often difficult to visualize. Approach: In the present study, we propose support vector regression (SVR) as an improved approach for generating continuous estimates of discharge rate and compare the fit characteristics of SVR to traditionally used methods, including Hanning window filtering and polynomial regression. Furthermore, we introduce ensembles as a method to visualize the discharge characteristics of large MU populations. We define ensembles as the average discharge profile of a subpopulation of MUs, composed of a time normalized ensemble average of all units within this subpopulation. Analysis was conducted with MUs decomposed from the tibialis anterior (N = 2128), medial gastrocnemius (N = 2673), and soleus (N = 1190) during isometric plantarflexion and dorsiflexion contractions. Main Result: Compared to traditional approaches, we found SVR to alleviate commonly observed inaccuracies and produce significantly less absolute fit error in the initial phase of MU discharge and throughout the entire duration of discharge. Additionally, we found the visualization of MU populations as ensembles to intuitively represent population discharge characteristics with appropriate accuracy for visualization. Significance: The results and methods outlined here provide an improved method for generating smooth estimates of MU discharge rate with SVR and present a unique approach to visualizing MU populations with ensembles. In combination, the use of SVR and generation of ensembles represent an efficient method for rendering population discharge characteristics.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Miaomiao Li ◽  
Zhaoxing Hao ◽  
Meng Luan ◽  
Haibo Li ◽  
Guikun Cao

Empirical findings from the impact of innovation investment volatility on enterprise technological innovation are mixed. Based on the punctuated equilibrium theory, this study explores the impact of innovation investment volatility on enterprise technological innovation in different life cycles and whether innovation subsidy has expected effects on enterprises’ technological innovation. By using the 205 Chinese listed enterprises in strategic emerging industries from 2010 to 2019 as the research sample, the results show that the innovation investment volatility has a positive impact on technological innovation of enterprise in the growing stage, while it has no significant effect on enterprise technological innovation in the mature and declining stages. In addition, the negative moderating effect of innovation subsidy on the relationship between innovation investment volatility and technological innovation is the most significant for enterprises in the growing stage, weakly significant for enterprises in the mature stage, and insignificant for enterprises in the declining stage.


Sign in / Sign up

Export Citation Format

Share Document