scholarly journals Emergent multicellular life cycles in filamentous bacteria owing to density-dependent population dynamics

2011 ◽  
Vol 8 (65) ◽  
pp. 1772-1784 ◽  
Author(s):  
Valentina Rossetti ◽  
Manuela Filippini ◽  
Miroslav Svercel ◽  
A. D. Barbour ◽  
Homayoun C. Bagheri

Filamentous bacteria are the oldest and simplest known multicellular life forms. By using computer simulations and experiments that address cell division in a filamentous context, we investigate some of the ecological factors that can lead to the emergence of a multicellular life cycle in filamentous life forms. The model predicts that if cell division and death rates are dependent on the density of cells in a population, a predictable cycle between short and long filament lengths is produced. During exponential growth, there will be a predominance of multicellular filaments, while at carrying capacity, the population converges to a predominance of short filaments and single cells. Model predictions are experimentally tested and confirmed in cultures of heterotrophic and phototrophic bacterial species. Furthermore, by developing a formulation of generation time in bacterial populations, it is shown that changes in generation time can alter length distributions. The theory predicts that given the same population growth curve and fitness, species with longer generation times have longer filaments during comparable population growth phases. Characterization of the environmental dependence of morphological properties such as length, and the number of cells per filament, helps in understanding the pre-existing conditions for the evolution of developmental cycles in simple multicellular organisms. Moreover, the theoretical prediction that strains with the same fitness can exhibit different lengths at comparable growth phases has important implications. It demonstrates that differences in fitness attributed to morphology are not the sole explanation for the evolution of life cycles dominated by multicellularity.

2017 ◽  
Author(s):  
Yuriy Pichugin ◽  
Jorge Peña ◽  
Paul B. Rainey ◽  
Arne Traulsen

AbstractReproduction is a defining feature of living systems. To reproduce, aggregates of biological units (e.g., multicellular organisms or colonial bacteria) must fragment into smaller parts. Fragmentation modes in nature range from binary fission in bacteria to collective-level fragmentation and the production of unicellular propagules in multicellular organisms. Despite this apparent ubiquity, the adaptive significance of fragmentation modes has received little attention. Here, we develop a model in which groups arise from the division of single cells that do not separate but stay together until the moment of group fragmentation. We allow for all possible fragmentation patterns and calculate the population growth rate of each associated life cycle. Fragmentation modes that maximise growth rate comprise a restrictive set of patterns that include production of unicellular propagules and division into two similar size groups. Life cycles marked by single-cell bottlenecks maximise population growth rate under a wide range of conditions. This surprising result offers a new evolutionary explanation for the widespread occurrence of this mode of reproduction. All in all, our model provides a framework for exploring the adaptive significance of fragmentation modes and their associated life cycles.Author SummaryMode of reproduction is a defining trait of all organisms, including colonial bacteria and multicellular organisms. To produce offspring, aggregates must fragment by splitting into two or more groups. The particular way that a given group fragments defines the life cycle of the organism. For instance, insect colonies can reproduce by splitting or by producing individuals that found new colonies. Similarly, some colonial bacteria propagate by fission or by releasing single cells, while others split in highly sophisticated ways; in multicellular organisms reproduction typically proceeds via a single cell bottleneck phase. The space of possibilities for fragmentation is so vast that an exhaustive analysis seems daunting. Focusing on fragmentation modes of a simple kind we parametrise all possible modes of group fragmentation and identify those modes leading to the fastest population growth rate. Two kinds of life cycle dominate: one involving division into two equal size groups, and the other involving production of a unicellular propagule. The prevalence of these life cycles in nature is consistent with our null model and suggests that benefits accruing from population growth rate alone may have shaped the evolution of fragmentation mode.


Author(s):  
V. I. Ipatova ◽  
A. G. Dmitrieva ◽  
О. F. Filenko ◽  
T. V. Drozdenko

The structure of the laboratory population of green microalgae Scenedesmus quadricauda (Turp.) Breb (=Desmodesmus communis E. Hegew.) was studied at different stages of its growth (lag-phase, log-phase and stationary phase) at low concentrations of copper chloride and silver nitrate by the method microculture, allowing to monitor the state and development of single cells having different physiological status. The response of the culture of S. quadricauda - the change in the number of cells and the fractional composition (the fraction of dividing, «dormant» and dying cells) depended not only on the concentration of the toxicant in the medium, but also on the physiological state of the culture: the level of synchronization and the growth phase. Silver ions at low concentrations had a more pronounced toxic effect on the culture than copper ions at different phases of its development, especially at a concentration of 0.001 mg/l (10-9 M). The main mechanism of the toxic effect of metals is to inhibit the process of cell division. At low concentrations of toxicants, especially at a concentration of 0.001 mg/l, a «paradoxical» effect expressed in the predominance of the fraction of «dormant» cells was revealed. The temporary inhibition of the process of cell division can be regarded as a protective mechanism that allows preserving the integrity of the population and its ability to survive in a changing environment. The obtained data explain the effect of action of low concentrations of substances due to their inclusion in the cell, the subsequent accumulation in the cell and their low excretion.


2019 ◽  
Vol 374 (1786) ◽  
pp. 20190098 ◽  
Author(s):  
Chuan Ku ◽  
Arnau Sebé-Pedrós

Understanding the diversity and evolution of eukaryotic microorganisms remains one of the major challenges of modern biology. In recent years, we have advanced in the discovery and phylogenetic placement of new eukaryotic species and lineages, which in turn completely transformed our view on the eukaryotic tree of life. But we remain ignorant of the life cycles, physiology and cellular states of most of these microbial eukaryotes, as well as of their interactions with other organisms. Here, we discuss how high-throughput genome-wide gene expression analysis of eukaryotic single cells can shed light on protist biology. First, we review different single-cell transcriptomics methodologies with particular focus on microbial eukaryote applications. Then, we discuss single-cell gene expression analysis of protists in culture and what can be learnt from these approaches. Finally, we envision the application of single-cell transcriptomics to protist communities to interrogate not only community components, but also the gene expression signatures of distinct cellular and physiological states, as well as the transcriptional dynamics of interspecific interactions. Overall, we argue that single-cell transcriptomics can significantly contribute to our understanding of the biology of microbial eukaryotes. This article is part of a discussion meeting issue ‘Single cell ecology’.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 367 ◽  
Author(s):  
Yuguang Liu ◽  
Dirk Schulze-Makuch ◽  
Jean-Pierre de Vera ◽  
Charles Cockell ◽  
Thomas Leya ◽  
...  

Single-cell sequencing is a powerful technology that provides the capability of analyzing a single cell within a population. This technology is mostly coupled with microfluidic systems for controlled cell manipulation and precise fluid handling to shed light on the genomes of a wide range of cells. So far, single-cell sequencing has been focused mostly on human cells due to the ease of lysing the cells for genome amplification. The major challenges that bacterial species pose to genome amplification from single cells include the rigid bacterial cell walls and the need for an effective lysis protocol compatible with microfluidic platforms. In this work, we present a lysis protocol that can be used to extract genomic DNA from both gram-positive and gram-negative species without interfering with the amplification chemistry. Corynebacterium glutamicum was chosen as a typical gram-positive model and Nostoc sp. as a gram-negative model due to major challenges reported in previous studies. Our protocol is based on thermal and chemical lysis. We consider 80% of single-cell replicates that lead to >5 ng DNA after amplification as successful attempts. The protocol was directly applied to Gloeocapsa sp. and the single cells of the eukaryotic Sphaerocystis sp. and achieved a 100% success rate.


2014 ◽  
Author(s):  
Nikolai Slavov ◽  
David Botstein ◽  
Amy Caudy

Yeast cells grown in culture can spontaneously synchronize their respiration, metabolism, gene expression and cell division. Such metabolic oscillations in synchronized cultures reflect single-cell oscillations, but the relationship between the oscillations in single cells and synchronized cultures is poorly understood. To understand this relationship and the coordination between metabolism and cell division, we collected and analyzed DNA-content, gene-expression and physiological data, at hundreds of time-points, from cultures metabolically-synchronized at different growth rates, carbon sources and biomass densities. The data enabled us to extend and generalize our mechanistic model, based on ensemble average over phases (EAP), connecting the population-average gene-expression of asynchronous cultures to the gene-expression dynamics in the single-cells comprising the cultures. The extended model explains the carbon-source specific growth-rate responses of hundreds of genes. Our physiological data demonstrate that the frequency of metabolic cycling in synchronized cultures increases with the biomass density, suggesting that this cycling is an emergent behavior, resulting from the entraining of the single-cell metabolic cycle by a quorum-sensing mechanism, and thus underscoring the difference between metabolic cycling in single cells and in synchronized cultures. Measurements of constant levels of residual glucose across metabolically synchronized cultures indicate that storage carbohydrates are required to fuel not only the G1/S transition of the division cycle but also the metabolic cycle. Despite the large variation in profiled conditions and in the scale of their dynamics, most genes preserve invariant dynamics of coordination with each other and with the rate of oxygen consumption. Similarly, the G1/S transition always occurs at the beginning, middle or end of the high oxygen consumption phases, analogous to observations in human and drosophila cells. These results highlight evolutionary conserved coordination among metabolism, cell growth and division.


2013 ◽  
Vol 13 (1) ◽  
pp. 2217-2242
Author(s):  
V. K. Meyer ◽  
H. Höller ◽  
H. D. Betz

Abstract. Total lightning (TL) data has been found to provide valuable information about the internal dynamics of a thunderstorm allowing conclusions about its further development as well as indicating potential of thunderstorm-related severe weather at the ground. This paper investigates electrical discharge correlations of strokes and flashes with respect to the temporal evolution of thunderstorms in case studies as well as by statistical means. The recently developed algorithm li-TRAM (tracking and monitoring of lightning-cells, Meyer et al., 2012) has been employed to track and monitor thunderstorms based on three-dimensionally resolved TL lightning data provided as stroke events by the European lightning location network LINET. From statistical investigation of 863 suited thunderstorm life-cycles the cell area turned out to correlate well with (a) the total discharge rate, (b) the in-cloud (IC) discharge rate, and (c) the mean IC discharge height per lightning-cell as identified by li-TRAM. All three parameter correlations consistently show an abrupt change in discharge characteristics around a cell area of 170 km2. Statistical investigations supported by the comparison of three case studies – selected to represent a single storm, a multi-cell and a supercell – strongly suggest that the correlation functions include the temporal evolution as well as the storm type. With the help of volumetric radar data, it can also be suggested that the well defined break observed at 170 km2 marks the region, where the transition occurs from short-lived and rather simple structured single storm cells to better organized, more persistent, and more complex structured thunderstorm forms, e.g. multi-cells and super-cells. All three storm-types experience similar discharge characteristics during their growing and dissipating phases. However, while the poorly organized and short-lived cells preferentially remain small during a short mature phase, mainly the more persistent thunderstorm types develop to sizes above 170 km2 during a pronounced mature stage. At that stage they exhibit on average higher discharge rates at higher altitudes as compared with matured single-cells. With the maximum stroke distance set to 10 km and a flash duration set to 1 s the parameterisation functions found for the stroke rate as function of the cell area has been transformed to a flash rate. The presented study suggests that, with respect to the storm type, stroke and flash correlations can be parameterized. There is also strong evidence, that parameterization functions include the time parameter, so that altogether TL stroke information has good potential to pre-estimate the further evolution (nowcast) of a currently observed storm in an object-oriented thunderstorm nowcasting approach.


Author(s):  
Aneel Narayanapur ◽  
Pavankumar Naik ◽  
Priya B Kori ◽  
Naseem Kalaburgi ◽  
Rubiya I M ◽  
...  

The detection of plant leaf is an very important factor to prevent serious outbreak. Automatic detection of plant disease is essential research topic. Most plant diseases are caused by fungi, bacteria, and viruses. Fungi are identified primarily from their morphology, with emphasis placed on their reproductive structures. Bacteria are considered more primitive than fungi and generally have simpler life cycles. With few exceptions, bacteria exist as single cells and increase in numbers by dividing into two cells during a process called binary fission Viruses are extremely tiny particles consisting of protein and genetic material with no associated protein. The term disease is usually used only for the destruction of live plants. The developed processing scheme consists of four main steps, first a color transformation structure for the input RGB image is created, this RGB is converted to HSI because RGB is for color generation and his for color descriptor. Then green pixels are masked and removed using specific threshold value, then the image is segmented and the useful segments are extracted, finally the texture statistics is computed. from SGDM matrices. Finally the presence of diseases on the plant leaf is evaluated.


1973 ◽  
Vol 13 (3) ◽  
pp. 889-900
Author(s):  
HIROSHI MIYAMOTO ◽  
L. RASMUSSEN ◽  
E. ZEUTHEN

As L cells go through their growth-division cycle they acquire the capacity to respond progressively more strongly to certain standard changes in the temperature of the environment. Using techniques described earlier, we found that chilling to 1, 6 or 10 °C for 1 h had little effect on the timing of the forthcoming division. Conversely, heating for 1 h to temperatures between 41 and 42 °C had a strong effect. Generally, the older the cell when heated, the more extended is its generation time; in other words, the longer is the forthcoming division postponed. We found evidence that late in the cycle the cells undergo transition from a state in which they are maximally delayed with respect to the performance of a division to one in which they are less delayed. We attempted to synchronize cell divisions with single and with series of heat shocks (41.6 °C for 1 h). Like our predecessors in the field, we obtained only partial synchrony. However, because L cells appear to prepare for division between shocks, and because heat shocks tend to reverse such preparations for division, we find reason to continue these experiments, using previous experience with Tetrahymena and Schizosaccharomyces as a guide. Both the latter cells respond to proper temperature treatment with synchronous cell division.


Author(s):  
Margaret Cohen

The great variety and radical metamorphoses of aquatic life forms attracted huge fascination during the nineteenth century, in part because they defied familiar paradigms of development and progress. In this chapter, Cohen explores how writers were inspired by such marine life-cycles to try out experiments in narrative prose, focusing in particular on the influence of marine variety on the depiction of psychological experience. Starting with Charles Kingsley’s Glaucus (1855), Cohen argues that Kingsley uses the life forms of the underwater kingdom to re-energise the poetic figure of metamorphosis, which, in his treatment, depends more upon natural science than myth. Cohen then shows how Kingsley translates marine metamorphosis into narrative experiment in The Water-Babies (1862), and creates an account of psychological experience that is more hallucinatory and phantasmagorical than developmental. Cohen finally suggests that marine metamorphosis has a similar impact on other authors, including Gustave Flaubert, Victor Hugo and Jules Michelet, all of whom stress the disturbing and disruptive possibilities of a psychological prose inspired by aquatic biology.


1991 ◽  
Vol 260 (3) ◽  
pp. G390-G398 ◽  
Author(s):  
F. Vogalis ◽  
S. M. Ward ◽  
K. M. Sanders

Electrical slow waves decay in amplitude as they conduct from the myenteric to the submucosal regions of the circular muscle layer in the canine pyloric sphincter. We used the partitioned chamber method to study the passive and active properties of pyloric muscles, and we found that length constants of circular muscles of myenteric region were significantly longer than muscles near the submucosal surface. These data suggested differences in either membrane resistance, junctional resistance, or cytoplasmic resistance. The first parameter was evaluated by measuring time constants in intact tissues and single cells isolated from the submucosal and myenteric regions. Membrane time constants were not different in the two regions, nor were differences found in the input resistances of isolated cells. Morphological studies failed to demonstrate differences in cell diameters in the two regions suggesting that cytoplasmic resistances are similar. These findings suggest that the different cable properties in the two regions may be due to differences in electrical coupling. Morphological examination revealed similar numbers of gap junctions between cells in the two regions, but large differences were noted in the size of muscular bundles. Muscles of the myenteric region were arranged into large, tightly packed bundles, whereas muscles of the submucosal region consisted of small bundles with an extensive extracellular space filled with connective tissue. We suggest that the difference in cable properties may be due to differences in electrical coupling between bundles. These data suggest that submucosal muscles function more like a multiunit smooth muscle, whereas myenteric muscles behave as a single unit.


Sign in / Sign up

Export Citation Format

Share Document