scholarly journals Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas

2014 ◽  
Vol 14 (20) ◽  
pp. 28105-28146 ◽  
Author(s):  
Z. L. Lüthi ◽  
B. Škerlak ◽  
S.-W. Kim ◽  
A. Lauer ◽  
A. Mues ◽  
...  

Abstract. The Himalayas and the Tibetan Plateau region (HTP), despite being a remote and sparsely populated area, is regularly exposed to polluted air masses with significant amounts of aerosols including black carbon. These dark, light-absorbing particles are known to exert a great melting potential on mountain cryospheric reservoirs through albedo reduction and radiative forcing. This study combines the available yet sparse ground-based and satellite data to identify a severe aerosol pollution episode observed simultaneously in central Tibet and on the southern side of the Himalayas during 13–19 March 2009. We detail how polluted air masses such as an atmospheric brown cloud (ABC) over South Asia reached the Tibetan Plateau during this pre-monsoon case study. In order to address the mechanisms of pollution transport in the complex topography of the HTP, air-mass trajectories are calculated using hourly outputs from the high-resolution numerical weather prediction model COSMO. Cross-mountain pollution transport is found to occur to a large extent at elevated tropospheric levels other than just through major river valleys. Lifting and advection of polluted air masses over the great mountain range is enabled by a combination of synoptic and local meteorological settings. Winds over the Indo Gangetic Plain (IGP) are generally weak at lower levels during the event, allowing for accumulation of pollutants. The passing of synoptic-scale troughs leads to south-westerly flow in the middle troposphere over northern and central India. Thus, ABC can build up south of the Himalayas and get carried northwards across the mountain range and onto the Tibetan Plateau as the winds obtain a southerly component. Air masses from the ABC hot-spot of the IGP can reach the high glaciers, which may have serious implications for the cryosphere in the HTP region and for climate on regional to global scales.

2015 ◽  
Vol 15 (11) ◽  
pp. 6007-6021 ◽  
Author(s):  
Z. L. Lüthi ◽  
B. Škerlak ◽  
S.-W. Kim ◽  
A. Lauer ◽  
A. Mues ◽  
...  

Abstract. The Himalayas and the Tibetan Plateau region (HTP), despite being a remote and sparsely populated area, is regularly exposed to polluted air masses with significant amounts of aerosols including black carbon. These dark, light-absorbing particles are known to exert a great melting potential on mountain cryospheric reservoirs through albedo reduction and radiative forcing. This study combines ground-based and satellite remote sensing data to identify a severe aerosol pollution episode observed simultaneously in central Tibet and on the southern side of the Himalayas during 13–19 March 2009 (pre-monsoon). Trajectory calculations based on the high-resolution numerical weather prediction model COSMO are used to locate the source regions and study the mechanisms of pollution transport in the complex topography of the HTP. We detail how polluted air masses from an atmospheric brown cloud (ABC) over South Asia reach the Tibetan Plateau within a few days. Lifting and advection of polluted air masses over the great mountain range is enabled by a combination of synoptic-scale and local meteorological processes. During the days prior to the event, winds over the Indo-Gangetic Plain (IGP) are generally weak at lower levels, allowing for accumulation of pollutants and thus the formation of ABCs. The subsequent passing of synoptic-scale troughs leads to southwesterly flow in the middle troposphere over northern and central India, carrying the polluted air masses across the Himalayas. As the IGP is known to be a hotspot of ABCs, the cross-Himalayan transport of polluted air masses may have serious implications for the cryosphere in the HTP and impact climate on regional to global scales. Since the current study focuses on one particularly strong pollution episode, quantifying the frequency and magnitude of similar events in a climatological study is required to assess the total impact.


2017 ◽  
Vol 17 (4) ◽  
pp. 3083-3095 ◽  
Author(s):  
Ruixiong Zhang ◽  
Yuhang Wang ◽  
Qiusheng He ◽  
Laiguo Chen ◽  
Yuzhong Zhang ◽  
...  

Abstract. Long-range transport followed by deposition of black carbon on glaciers of Tibet is one of the key issues of climate research as it induces changes on radiative forcing and subsequently impacting the melting of glaciers. The transport mechanism, however, is not well understood. In this study, we use short-lived reactive aromatics as proxies to diagnose transport of pollutants to Tibet. In situ observations of short-lived reactive aromatics across the Tibetan Plateau are analyzed using a regional chemistry and transport model. The model performance using the current emission inventories over the region is poor due to problems in the inventories and model transport. Top-down emissions constrained by satellite observations of glyoxal are a factor of 2–6 higher than the a priori emissions over the industrialized Indo-Gangetic Plain. Using the top-down emissions, agreement between model simulations and surface observations of aromatics improves. We find enhancements of reactive aromatics over Tibet by a factor of 6 on average due to rapid transport from India and nearby regions during the presence of a high-altitude cut-off low system. Our results suggest that the cut-off low system is a major pathway for long-range transport of pollutants such as black carbon. The modeling analysis reveals that even the state-of-the-science high-resolution reanalysis cannot simulate this cut-off low system accurately, which probably explains in part the underestimation of black carbon deposition over Tibet in previous modeling studies. Another model deficiency of underestimating pollution transport from the south is due to the complexity of terrain, leading to enhanced transport. It is therefore challenging for coarse-resolution global climate models to properly represent the effects of long-range transport of pollutants on the Tibetan environment and the subsequent consequence for regional climate forcing.


2016 ◽  
Author(s):  
Ruixiong Zhang ◽  
Yuhang Wang ◽  
Qiusheng He ◽  
Laiguo Chen ◽  
Yuzhong Zhang ◽  
...  

Abstract. Long-range transport and subsequent deposition of black carbon on glaciers of Tibet is one of the key issues of climate research inducing changes on radiative forcing and subsequently impacting on the melting of glaciers. The transport mechanism, however, is not well understood. In this study, we use short-lived reactive aromatics as proxies to diagnose transport of pollutants to Tibet. In situ observations of short-lived reactive aromatics across the Tibetan Plateau are analyzed using a regional chemistry and transport model. The model performance using the current emission inventories over the region is poor due to problems in the inventories and model transport. Top-down emissions constrained by satellite observations of glyoxal (CHOCHO) are a factor of 2–6 higher than the a priori emissions over the industrialized Indo-Gangetic Plain. Using the top-down emissions, agreement between model simulations and surface observations of aromatics improves. We find enhancements of reactive aromatics over Tibet by a factor of 6 on average due to rapid transport from India and nearby regions during the presence of a high-altitude cut-off low system. Our results suggest that the cut-off low system is a major pathway for long-range transport of pollutants such as black carbon. The modeling analysis reveals that even the state-of-the-science high-resolution reanalysis cannot simulate this cut-off low system accurately, which probably explains in part the underestimation of black carbon deposition over Tibet in previous modeling studies. Furthermore, another model deficiency of underestimating pollution transport from the south is due to the complexity of terrain, leading to enhanced transport. It is therefore challenging for coarse-resolution global climate models to properly represent the effects of long-range transport of pollutants on the Tibetan environment and the subsequent consequence for regional climate forcing.


2020 ◽  
Vol 20 (10) ◽  
pp. 5923-5943 ◽  
Author(s):  
Meixin Zhang ◽  
Chun Zhao ◽  
Zhiyuan Cong ◽  
Qiuyan Du ◽  
Mingyue Xu ◽  
...  

Abstract. Most previous modeling studies about black carbon (BC) transport and its impact over the Tibetan Plateau (TP) conducted simulations with horizontal resolutions coarser than 20 km that may not be able to resolve the complex topography of the Himalayas well. In this study, the two experiments covering all of the Himalayas with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) at the horizontal resolution of 4 km but with two different topography datasets (4 km complex topography and 20 km smooth topography) are conducted for pre-monsoon season (April 2016) to investigate the impacts of topography on modeling the transport and distribution of BC over the TP. Both experiments show the evident accumulation of aerosols near the southern Himalayas during the pre-monsoon season, consistent with the satellite retrievals. The observed episode of high surface BC concentration at the station near Mt. Everest due to heavy biomass burning near the southern Himalayas is well captured by the simulations. The simulations indicate that the prevailing upflow across the Himalayas driven by the large-scale westerly and small-scale southerly circulations during the daytime is the dominant transport mechanism of southern Asian BC into the TP, and it is much stronger than that during the nighttime. The simulation with the 4 km topography resolves more valleys and mountain ridges and shows that the BC transport across the Himalayas can overcome the majority of mountain ridges, but the valley transport is more efficient. The complex topography results in stronger overall cross-Himalayan transport during the simulation period primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed at some valleys and deeper valley channels associated with larger transported BC mass volume. This results in 50 % higher transport flux of BC across the Himalayas and 30 %–50 % stronger BC radiative heating in the atmosphere up to 10 km over the TP from the simulation with the 4 km complex topography than that with the 20 km smoother topography. The different topography also leads to different distributions of snow cover and BC forcing in snow. This study implies that the relatively smooth topography used by the models with resolutions coarser than 20 km may introduce significant negative biases in estimating light-absorbing aerosol radiative forcing over the TP during the pre-monsoon season. Highlights. The black carbon (BC) transport across the Himalayas can overcome the majority of mountain ridges, but the valley transport is much more efficient during the pre-monsoon season. The complex topography results in stronger overall cross-Himalayan transport during the study period primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed at some valleys and deeper valley channels associated with larger transported BC mass volume. The complex topography generates 50 % higher transport flux of BC across the Himalayas and 30 %–50 % stronger BC radiative heating in the atmosphere up to 10 km over the Tibetan Plateau (TP) than the smoother topography, which implies that the smooth topography used by the models with relatively coarse resolution may introduce significant negative biases in estimating BC radiative forcing over the TP during the pre-monsoon season. The different topography also leads to different distributions of snow cover and BC forcing in snow over the TP.


2016 ◽  
Author(s):  
Xiaoping Wang ◽  
Jiao Ren ◽  
Ping Gong ◽  
Chuanfei Wang ◽  
Yonggang Xue ◽  
...  

Abstract. The Tibetan Plateau (TP) has been contaminated by persistent organic pollutants (POPs), including legacy organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) through atmospheric transport. The exact source regions, transport pathways and time trends of POPs to the TP are not well understood. Here XAD-based passive air samplers (PAS) were deployed at 16 Tibetan background sites from 2007 to 2012 to gain further insight into spatial patterns and temporal trends of OCPs and PCBs. The southeastern TP was characterized by dichlorodiphenyltrichloroethane (DDT) -related chemicals delivered by Indian Monsoon air masses. The northern and northwestern TP displayed the greatest absolute concentration and relative abundance of hexachlorobenzene (HCB) in the atmosphere, caused by the westerly-driven European air masses. The interactions between the DDT polluted Indian monsoon air and the clean westerly winds formed a transition zone in central Tibet where both DDT and HCB were the dominant chemicals. Based on 5-year of continuous sampling, our data indicated declining concentrations of HCB and hexachlorocyclohexanes (HCHs) across the Tibetan region. Inter-annual trends of DDT class chemicals, however, showed less variation during this 5-year sampling period, which may be due to the on-going usage of DDT in India. This paper demonstrates the possibility of using POPs fingerprints to investigate the climate interactions and the validity of using PAS to derive inter-annual atmospheric POPs time trends.


2019 ◽  
Vol 32 (4) ◽  
pp. 1181-1202 ◽  
Author(s):  
Zhiling Xie ◽  
Bin Wang

Multiple bias-corrected top-quality reanalysis datasets, gauge-based observations, and selected satellite products are synthetically employed to revisit the climatology and variability of the summer atmospheric heat sources over the Tibetan Plateau (TP). Verification-based selection and ensemble-mean methods are utilized to combine various datasets. Different from previous works, this study pays special attention to estimating the total heat source (TH) and its components over the data-void western plateau (70°–85°E), including the surface sensible heat (SH), latent heat released by precipitation (LH), and net radiation flux (RD). Consistent with previous studies, the climatology of summer SH (LH) typically increases (decreases) from southeast to northwest. Generally, LH dominates TH over most of the TP. A notable new finding is a minimum TH area over the high-altitude region of the northwestern TP, where the Karakoram mountain range is located. We find that during the period of 1984–2006, TH shows insignificant trends over the eastern and central TP, whereas it exhibits an evident increasing trend over the western TP that is attributed to the rising tendency of LH before 1996 and to that of RD after 1996. The year-to-year variation of TH over the central–eastern TP is highly correlated with that of LH, but that is not the case over the western TP. It is also worth noting that the variations of TH in each summer month are not significantly correlated with each other, and hence study of the interannual variation of the TP heat sources should consider the remarkable subseasonal variations.


2019 ◽  
Vol 19 (2) ◽  
pp. 1373-1391 ◽  
Author(s):  
Huiming Lin ◽  
Yindong Tong ◽  
Xiufeng Yin ◽  
Qianggong Zhang ◽  
Hui Zhang ◽  
...  

Abstract. Located in the world's “third pole” and a remote region connecting the Indian plate and the Eurasian plate, Qomolangma National Nature Preserve (QNNP) is an ideal region to study the long-range transport of atmospheric pollutants. In this study, gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) were continuously measured during the Indian monsoon transition period in QNNP. A slight increase in the GEM concentration was observed from the period preceding the Indian summer monsoon (1.31±0.42 ng m−3) to the Indian summer monsoon period (1.44±0.36 ng m−3), while significant decreases were observed in the GOM and PBM concentrations, with concentrations decreasing from 35.2±18.6 to 19.3±10.9 pg m−3 (p < 0.001) for GOM and from 30.5±12.5 to 24.9±19.8 pg m−3 (p < 0.001) for PBM. A unique daily pattern was observed in QNNP with respect to the GEM concentration, with a peak value before sunrise and a low value at noon. Relative to the (low) GEM concentrations, GOM concentrations (with a mean value of 21.4±13.4 pg m−3, n=1239) in this region were relatively high compared with the measured values in some other regions of China. A cluster analysis indicated that the air masses transported to QNNP changed significantly at different stages of the monsoon, and the major potential mercury (Hg) sources shifted from northern India and western Nepal to eastern Nepal and Bangladesh. As there is a large area covered in glaciers in QNNP, local glacier winds could increase the transboundary transport of pollutants and transport polluted air masses to the Tibetan Plateau. The atmospheric Hg concentration in QNNP in the Indian summer monsoon period was influenced by transboundary Hg flows. This highlights the need for a more specific identification of Hg sources impacting QNNP and underscores the importance of international cooperation regarding global Hg controls.


2005 ◽  
Vol 18 (22) ◽  
pp. 4660-4668 ◽  
Author(s):  
Jian Li ◽  
Rucong Yu ◽  
Tianjun Zhou ◽  
Bin Wang

Abstract The temperature shift over the eastern flank of the Tibetan Plateau is examined using the last 50 yr of Chinese surface station observations. It was found that a strong cooling shift occurs in early spring (March and April) and late summer (July, August, and September) in contrast to the warming shift in other seasons. The cause of the March–April (MA) cooling is investigated in this study. The MA cooling shift on the lee side of the Tibetan Plateau is found to be not a local phenomenon, but rather it is associated with an eastward extension of a cooling signal originating from North Africa that is related to the North Atlantic Oscillation (NAO) in the previous winter. The midtropospheric westerlies over the North Atlantic and North Africa tend to intensify during positive NAO phases. The enhanced westerlies, after passing over the Tibetan Plateau, result in strengthened ascending motion against the lee side of the plateau, which favors the formation of midlevel stratiform clouds. The increased amount of stratus clouds induces a negative net cloud–radiative forcing, which thereby cools the surface air and triggers a positive cloud–temperature feedback. In this way, the cooling signal from the upstream could “jump” over the Tibetan Plateau and leave a footprint on its lee side. The continental stratiform cloud–climate feedback plays a significant role in the amplification of the cooling shift downstream of the Tibetan Plateau.


Sign in / Sign up

Export Citation Format

Share Document