scholarly journals Using proxies to explore ensemble uncertainty in climate impact studies: the example of air pollution

2015 ◽  
Vol 15 (20) ◽  
pp. 28361-28393
Author(s):  
V. E. P. Lemaire ◽  
A. Colette ◽  
L. Menut

Abstract. Because of its sensitivity to unfavorable weather patterns, air pollution is sensitive to climate change so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projection. However, the computing cost of such method requires optimizing ensemble exploration techniques. By using a training dataset of deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for 8 regions in Europe and developed simple statistical models that could be used to predict air pollutant concentrations. The evolution of the key climate variables driving either particulate or gaseous pollution allows concluding on the robustness of the climate impact on air quality. The climate benefit for PM2.5 was confirmed −0.96 (±0.18), −1.00 (±0.37), −1.16 ± (0.23) μg m−3, for resp. Eastern Europe, Mid Europe and Northern Italy and for the Eastern Europe, France, Iberian Peninsula, Mid Europe and Northern Italy regions a climate penalty on ozone was identified 10.11 (±3.22), 8.23 (±2.06), 9.23 (±1.13), 6.41 (±2.14), 7.43 (±2.02) μg m−3. This technique also allows selecting a subset of relevant regional climate model members that should be used in priority for future deterministic projections.

2013 ◽  
Vol 13 (3) ◽  
pp. 6455-6499 ◽  
Author(s):  
A. Colette ◽  
B. Bessagnet ◽  
R. Vautard ◽  
S. Szopa ◽  
S. Rao ◽  
...  

Abstract. To quantify changes in air pollution in Europe at the 2050 horizon, we designed a comprehensive modelling system that captures the external factors considered to be most relevant and relies on up-to-date and consistent sets of air pollution and climate policy scenarios. Global and regional climate as well as global chemistry simulations are based on the recent Representative Concentrations Pathways (RCP) produced for the Fifth Assessment Report (AR5) of IPCC whereas regional air quality modelling is based on the updated emissions scenarios produced in the framework of the Global Energy Assessment. We explored two diverse scenarios: a reference scenario where climate policies are absent and a mitigation scenario which limits global temperature rise to within 2 °C by the end of this century. This first assessment of projected air quality and climate at the regional scale based on CMIP5 (5th Climate Model Intercomparison Project) climate simulations is in line with the existing literature using CMIP3. The discrepancy between air quality simulations obtained with a climate model or with meteorological reanalyses is pointed out. Sensitivity simulations show that the main factor driving future air quality projections is air pollutant emissions, rather than climate change or long range transport. Whereas the well documented "climate penalty" bearing upon ozone over Europe is confirmed, other features appear less robust compared to the literature: such as the impact of climate on PM2.5. The quantitative disentangling of each contributing factor shows that the magnitude of the ozone climate penalty has been overstated in the past while on the contrary the contribution of the global ozone burden is overlooked in the literature.


2016 ◽  
Vol 16 (4) ◽  
pp. 2559-2574 ◽  
Author(s):  
Vincent E. P. Lemaire ◽  
Augustin Colette ◽  
Laurent Menut

Abstract. Because of its sensitivity to unfavorable weather patterns, air pollution is sensitive to climate change so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projections. However, the computing cost of such methods requires optimizing ensemble exploration techniques. By using a training data set from a deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for eight regions in Europe and developed statistical models that could be used to predict air pollutant concentrations. The evolution of the key climate variables driving either particulate or gaseous pollution allows selecting the members of the EuroCordex ensemble of regional climate projections that should be used in priority for future air quality projections (CanESM2/RCA4; CNRM-CM5-LR/RCA4 and CSIRO-Mk3-6-0/RCA4 and MPI-ESM-LR/CCLM following the EuroCordex terminology). After having tested the validity of the statistical model in predictive mode, we can provide ranges of uncertainty attributed to the spread of the regional climate projection ensemble by the end of the century (2071–2100) for the RCP8.5. In the three regions where the statistical model of the impact of climate change on PM2.5 offers satisfactory performances, we find a climate benefit (a decrease of PM2.5 concentrations under future climate) of −1.08 (±0.21), −1.03 (±0.32), −0.83 (±0.14) µg m−3, for respectively Eastern Europe, Mid-Europe and Northern Italy. In the British-Irish Isles, Scandinavia, France, the Iberian Peninsula and the Mediterranean, the statistical model is not considered skillful enough to draw any conclusion for PM2.5. In Eastern Europe, France, the Iberian Peninsula, Mid-Europe and Northern Italy, the statistical model of the impact of climate change on ozone was considered satisfactory and it confirms the climate penalty bearing upon ozone of 10.51 (±3.06), 11.70 (±3.63), 11.53 (±1.55), 9.86 (±4.41), 4.82 (±1.79) µg m−3, respectively. In the British-Irish Isles, Scandinavia and the Mediterranean, the skill of the statistical model was not considered robust enough to draw any conclusion for ozone pollution.


2020 ◽  
Vol 9 (8) ◽  
pp. 2351
Author(s):  
Łukasz Kuźma ◽  
Krzysztof Struniawski ◽  
Szymon Pogorzelski ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok—the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number—and causes of death—of Białystok residents in the period 2008–2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02–1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01–1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02–1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.


2017 ◽  
Vol 10 (9) ◽  
pp. 3255-3276 ◽  
Author(s):  
Augustin Colette ◽  
Camilla Andersson ◽  
Astrid Manders ◽  
Kathleen Mar ◽  
Mihaela Mircea ◽  
...  

Abstract. The EURODELTA-Trends multi-model chemistry-transport experiment has been designed to facilitate a better understanding of the evolution of air pollution and its drivers for the period 1990–2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional-scale air quality. The present paper formulates the main scientific questions and policy issues being addressed by the EURODELTA-Trends modelling experiment with an emphasis on how the design and technical features of the modelling experiment answer these questions. The experiment is designed in three tiers, with increasing degrees of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000, and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions, and (iii) meteorology complements it. The most demanding tier consists of two complete time series from 1990 to 2010, simulated using either time-varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and five models have – to date – completed the full set of simulations (and 21-year trend calculations have been performed by four models). The modelling results are publicly available for further use by the scientific community. The main expected outcomes are (i) an evaluation of the models' performances for the three reference years, (ii) an evaluation of the skill of the models in capturing observed air pollution trends for the 1990–2010 time period, (iii) attribution analyses of the respective role of driving factors (e.g. emissions, boundary conditions, meteorology), (iv) a dataset based on a multi-model approach, to provide more robust model results for use in impact studies related to human health, ecosystem, and radiative forcing.


2017 ◽  
Vol 17 (10) ◽  
pp. 6393-6421 ◽  
Author(s):  
Eri Saikawa ◽  
Hankyul Kim ◽  
Min Zhong ◽  
Alexander Avramov ◽  
Yu Zhao ◽  
...  

Abstract. Anthropogenic air pollutant emissions have been increasing rapidly in China, leading to worsening air quality. Modelers use emissions inventories to represent the temporal and spatial distribution of these emissions needed to estimate their impacts on regional and global air quality. However, large uncertainties exist in emissions estimates. Thus, assessing differences in these inventories is essential for the better understanding of air pollution over China. We compare five different emissions inventories estimating emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter with an aerodynamic diameter of 10 µm or less (PM10) from China. The emissions inventories analyzed in this paper include the Regional Emission inventory in ASia v2.1 (REAS), the Multi-resolution Emission Inventory for China (MEIC), the Emission Database for Global Atmospheric Research v4.2 (EDGAR), the inventory by Yu Zhao (ZHAO), and the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS). We focus on the period between 2000 and 2008, during which Chinese economic activities more than doubled. In addition to national totals, we also analyzed emissions from four source sectors (industry, transport, power, and residential) and within seven regions in China (East, North, Northeast, Central, Southwest, Northwest, and South) and found that large disagreements exist among the five inventories at disaggregated levels. These disagreements lead to differences of 67 µg m−3, 15 ppbv, and 470 ppbv for monthly mean PM10, O3, and CO, respectively, in modeled regional concentrations in China. We also find that all the inventory emissions estimates create a volatile organic compound (VOC)-limited environment and MEIC emissions lead to much lower O3 mixing ratio in East and Central China compared to the simulations using REAS and EDGAR estimates, due to their low VOC emissions. Our results illustrate that a better understanding of Chinese emissions at more disaggregated levels is essential for finding effective mitigation measures for reducing national and regional air pollution in China.


2013 ◽  
Vol 726-731 ◽  
pp. 1396-1399 ◽  
Author(s):  
Ping Liu ◽  
Hong Ling Guo

This study analyzed the impact of building Tianfu new area in Sichuan on Chengdu city air quality. The paper insists the characteristics of terrain and climate in Tianfu new area lead to the difficult to convect and diffuse air pollutant, and the trend of air quality deteriorating has already emerged as the activities of a large number of industries and population. Absolutely ,building Tianfu new area will further aggravate this trend. And the paper suggests the government should take positive measure in management and policy to prevent and control air pollution.


2013 ◽  
Vol 13 (15) ◽  
pp. 7451-7471 ◽  
Author(s):  
A. Colette ◽  
B. Bessagnet ◽  
R. Vautard ◽  
S. Szopa ◽  
S. Rao ◽  
...  

Abstract. To quantify changes in air pollution over Europe at the 2050 horizon, we designed a comprehensive modelling system that captures the external factors considered to be most relevant, and that relies on up-to-date and consistent sets of air pollution and climate policy scenarios. Global and regional climate as well as global chemistry simulations are based on the recent representative concentration pathways (RCP) produced for the Fifth Assessment Report (AR5) of the IPCC (Intergovernmental Panel on Climate Change) whereas regional air quality modelling is based on the updated emissions scenarios produced in the framework of the Global Energy Assessment. We explored two diverse scenarios: a reference scenario where climate policies are absent and a mitigation scenario which limits global temperature rise to within 2 °C by the end of this century. This first assessment of projected air quality and climate at the regional scale based on CMIP5 (5th Coupled Model Intercomparison Project) climate simulations is in line with the existing literature using CMIP3. The discrepancy between air quality simulations obtained with a climate model or with meteorological reanalyses is pointed out. Sensitivity simulations show that the main factor driving future air quality projections is air pollutant emissions, rather than climate change or intercontinental transport of pollution. Whereas the well documented "climate penalty" that weights upon ozone (increase of ozone pollution with global warming) over Europe is confirmed, other features appear less robust compared to the literature, such as the impact of climate on PM2.5. The quantitative disentangling of external factors shows that, while several published studies focused on the climate penalty bearing upon ozone, the contribution of the global ozone burden is somewhat overlooked in the literature.


2017 ◽  
Author(s):  
Augustin Colette ◽  
Camilla Andersson ◽  
Astrid Manders ◽  
Kathleen Mar ◽  
Mihaela Mircea ◽  
...  

Abstract. The Eurodelta-Trends multi-model chemistry-transport experiment has been designed to facilitate a better understanding of the evolution of air pollution and its drivers for the period 1990–2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional scale air quality. The present paper formulates the main scientific questions and policy issues being addressed by the Eurodelta-Trends modelling experiment with an emphasis on how the design and technical features of the modelling experiment answer these questions. The experiment is designed in three tiers with increasing degree of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000 and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions and (iii) meteorology complements it. The most demanding tier consists two complete time series from 1990 to 2010, simulated using either time varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and three models have – to date – completed the full set of simulations (and 21-year trend calculations have been performed by four models). The modelling results are publicly available for further use by the scientific community. The main expected outcomes are (i) an evaluation of the models performances for the three reference years, (ii) an evaluation of the skill of the models in capturing observed air pollution trends for the 1990–2010 time period, (iii) attribution analyses of the respective role of driving factors (emissions/boundary conditions/meteorology), (iv) a dataset based on a multi-model approach, to provide more robust model results for use in impact studies related to human health, ecosystem and radiative forcing.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 158 ◽  
Author(s):  
Marta G. Vivanco ◽  
Juan Luis Garrido ◽  
Fernando Martín ◽  
Mark R. Theobald ◽  
Victoria Gil ◽  
...  

During the last few decades, European legislation has driven progress in reducing air pollution in Europe through emission mitigation measures. In this paper, we use a chemistry transport model to assess the impact on ambient air quality of the measures considered for 2030 in the for the scenarios with existing (WEM2030) and additional measures (WAM2030). The study estimates a general improvement of air quality for the WAM2030 scenario, with no non-compliant air quality zones for NO2, SO2, and PM indicators. Despite an improvement for O3, the model still estimates non-compliant areas. For this pollutant, the WAM2030 scenario leads to different impacts depending on the indicator considered. Although the model estimates a reduction in maximum hourly O3 concentrations, small increases in O3 concentrations in winter and nighttime in the summer lead to increases in the annual mean in some areas and increases in other indicators (SOMO35 for health impacts and AOT40 for impacts on vegetation) in some urban areas. The results suggest that the lower NOx emissions in the WEM and WAM scenarios lead to less removal of O3 by NO titration, especially background ozone in winter and both background and locally produced ozone in summer, in areas with high NOx emissions.


2011 ◽  
Vol 24 (13) ◽  
pp. 3362-3376 ◽  
Author(s):  
Zhan Zhao ◽  
Shu-Hua Chen ◽  
Michael J. Kleeman ◽  
Abdullah Mahmud

Abstract In this study, the Weather Research and Forecasting (WRF) model was applied to dynamically downscale the Parallel Climate Model (PCM) projection for the climate change impact on regional meteorological conditions in California. Comparisons were made for meteorological fields that strongly influence regional air quality between the current (2000–06) and future (2047–53) downscaling results to infer potential air pollution changes in California. Changes in both the meteorological fields and the implied future air quality vary by region and season. Analyses showed that the normalized number of stagnation days (NNSD) integrating all stagnation events, during which most of the air pollution episodes occur, in California's San Joaquin Valley (SJV) will increase and the intensity of stagnation will be stronger in the future for the two main air pollution seasons (i.e., summer and winter). Increases in surface wind and planetary boundary layer height (PBLH) were observed for the coastal part of Los Angeles County (LAC) during summer, suggesting stronger ventilation in this region. Contrary situations were seen in other parts of the South Coast Air Basin (SoCAB) and SJV. Although a surface wind change was not evident in SJV during winter, there was a significant PBLH decrease. Climatechangeinduced variations in surface wind and PBLH were only statistically significant in coastal SoCAB and the southern portion of SJV relative to the corresponding interannual variability; changes in temperature are significant throughout the regions studied. The sea breeze along the coast of California plays an important role in the state's climate and air quality, especially during summertime owing to the stronger intensity compared to wintertime. Analysis of the land–sea temperature contrast and the southwesterly wind along the California coastline indicated that the summertime sea breeze will be stronger in the Central Valley (CV) but weaker for the SoCAB region in the future.


Sign in / Sign up

Export Citation Format

Share Document