scholarly journals The impact of parameterising light penetration into snow on the photochemical production of NO<sub>x</sub> and OH radicals in snow

2015 ◽  
Vol 15 (6) ◽  
pp. 8609-8646
Author(s):  
H. G. Chan ◽  
M. D. King ◽  
M. M. Frey

Abstract. Snow photochemical processes drive production of chemical trace gases, including nitrogen oxides (NO and NO2), and HOx radicals in snowpacks which are then released to the lower atmosphere. Coupled atmosphere–snow modelling on global scales requires simple parameterisations of actinic flux in snow to reduce computational cost. The disagreement between a physical radiative transfer method and a method based upon the e-folding depth of light-in snow is evaluated. In particular for the photolysis of the nitrate anion (NO3-), the nitrite anion (NO2-) and hydrogen peroxide (H2O2) within snow and photolysis of gas-phase nitrogen dioxide (NO2) within the snowpack interstitial air are considered. The emission flux from the snowpack is estimated as the depth-integrated photolysis rate, v, calculated (a) explicitly with a physical radiative transfer model (TUV), vTUV and (b) with a simple parameterisation based on e-folding depth, vze. The evaluation is based upon the deviation of the ratio of depth-integrated photolysis rate determined by the two methods,vTUV/vze, from unity. The disagreement in depth-integrated photolysis rate between the RT model and e-folding depth parameterisation depends primarily on the photolysis action spectrum of chemical species, solar zenith angle and optical properties of the snowpack, (scattering cross-section and a weak dependence on light absorbing impurity (black carbon) and density). For photolysis of NO2, the NO2- anion, the NO3- anion and H2O2 the ratio vTUV/vze varies within the range of 0.82–1.35, 0.88–1.28 and 0.92–1.27 respectively. The e-folding depth parameterisation underestimates for small solar zenith angles and overestimates at solar zenith angles around 60°. A simple algorithm has been developed to improve the parameterisation which reduced the ratio vTUV/vze to 0.97–1.02, 0.99–1.02 and 0.99–1.03 for photolysis of NO2, the NO2- anion, the NO3- anion and H2O2 respectively. The e-folding depth parameterisation may give acceptable results for the photolysis of the NO3- anion and H2O2 in cold polar snow with large solar zenith angles, but can be improved by a correction based on solar zenith angle.

2015 ◽  
Vol 15 (14) ◽  
pp. 7913-7927 ◽  
Author(s):  
H. G. Chan ◽  
M. D. King ◽  
M. M. Frey

Abstract. Snow photochemical processes drive production of chemical trace gases in snowpacks, including nitrogen oxides (NOx = NO + NO2) and hydrogen oxide radical (HOx = OH + HO2), which are then released to the lower atmosphere. Coupled atmosphere–snow modelling of theses processes on global scales requires simple parameterisations of actinic flux in snow to reduce computational cost. The disagreement between a physical radiative-transfer (RT) method and a parameterisation based upon the e-folding depth of actinic flux in snow is evaluated. In particular, the photolysis of the nitrate anion (NO3-), the nitrite anion (NO2-) and hydrogen peroxide (H2O2) in snow and nitrogen dioxide (NO2) in the snowpack interstitial air are considered. The emission flux from the snowpack is estimated as the product of the depth-integrated photolysis rate coefficient, v, and the concentration of photolysis precursors in the snow. The depth-integrated photolysis rate coefficient is calculated (a) explicitly with an RT model (TUV), vTUV, and (b) with a simple parameterisation based on e-folding depth, vze. The metric for the evaluation is based upon the deviation of the ratio of the depth-integrated photolysis rate coefficient determined by the two methods, vTUV/vze, from unity. The ratio depends primarily on the position of the peak in the photolysis action spectrum of chemical species, solar zenith angle and physical properties of the snowpack, i.e. strong dependence on the light-scattering cross section and the mass ratio of light-absorbing impurity (i.e. black carbon and HULIS) with a weak dependence on density. For the photolysis of NO2, the NO2- anion, the NO3- anion and H2O2 the ratio vTUV/vze varies within the range of 0.82–1.35, 0.88–1.28, 0.93–1.27 and 0.91–1.28 respectively. The e-folding depth parameterisation underestimates for small solar zenith angles and overestimates at solar zenith angles around 60° compared to the RT method. A simple algorithm has been developed to improve the parameterisation which reduces the ratio vTUV/vze to 0.97–1.02, 0.99–1.02, 0.99–1.03 and 0.98–1.06 for photolysis of NO2, the NO2- anion, the NO3- anion and H2O2 respectively. The e-folding depth parameterisation may give acceptable results for the photolysis of the NO3- anion and H2O2 in cold polar snow with large solar zenith angles, but it can be improved by a correction based on solar zenith angle and for cloudy skies.


2007 ◽  
Vol 85 (11) ◽  
pp. 1159-1176
Author(s):  
D A Degenstein ◽  
A E Bourassa ◽  
E J Llewellyn ◽  
N D Lloyd

A simple radiative transfer model is developed to calculate the contribution of sea-glint to limb radiance. It is shown that the absolute sea-glint signal peaks between 70° and 80° solar zenith angle. Sea-glint can contribute 10–15% of the total limb radiance at wavelengths greater than 600 nm, which is several times brighter than an equivalent 5% reflecting Lambertian ocean surface. A test case was identified over the Arabian Sea in October 2002 and the model results compared to limb observations from the Optical Spectrograph and Infra-Red Imaging System (OSIRIS) on-board the Odin satellite. PACS Nos.: 94.10.Gb, 93.85.+q, 42.68.Ay, 42.68.Mj


2005 ◽  
Vol 44 (6) ◽  
pp. 789-803 ◽  
Author(s):  
Jordi Badosa ◽  
Josep-Abel González ◽  
Josep Calbó ◽  
Michiel van Weele ◽  
Richard L. McKenzie

Abstract To perform a climatic analysis of the annual UV index (UVI) variations in Catalonia, Spain (northeast of the Iberian Peninsula), a new simple parameterization scheme is presented based on a multilayer radiative transfer model. The parameterization performs fast UVI calculations for a wide range of cloudless and snow-free situations and can be applied anywhere. The following parameters are considered: solar zenith angle, total ozone column, altitude, aerosol optical depth, and single-scattering albedo. A sensitivity analysis is presented to justify this choice with special attention to aerosol information. Comparisons with the base model show good agreement, most of all for the most common cases, giving an absolute error within ±0.2 in the UVI for a wide range of cases considered. Two tests are done to show the performance of the parameterization against UVI measurements. One uses data from a high-quality spectroradiometer from Lauder, New Zealand [45.04°S, 169.684°E, 370 m above mean sea level (MSL)], where there is a low presence of aerosols. The other uses data from a Robertson–Berger-type meter from Girona, Spain (41.97°N, 2.82°E, 100 m MSL), where there is more aerosol load and where it has been possible to study the effect of aerosol information on the model versus measurement comparison. The parameterization is applied to a climatic analysis of the annual UVI variation in Catalonia, showing the contributions of solar zenith angle, ozone, and aerosols. High-resolution seasonal maps of typical UV index values in Catalonia are presented.


Author(s):  
Clare E. Singer ◽  
Ignacio Lopez-Gomez ◽  
Xiyue Zhang ◽  
Tapio Schneider

AbstractClouds cover on average nearly 70% of Earth’s surface and regulate the global albedo. The magnitude of the shortwave reflection by clouds depends on their location, optical properties, and three-dimensional (3D) structure. Due to computational limitations, Earth system models are unable to perform 3D radiative transfer calculations. Instead they make assumptions, including the independent column approximation (ICA), that neglect effects of 3D cloud morphology on albedo. We show how the resulting radiative flux bias (ICA-3D) depends on cloud morphology and solar zenith angle. We use high-resolution (20–100 m horizontal resolution) large-eddy simulations to produce realistic 3D cloud fields covering three dominant regimes of low-latitude clouds: shallow cumulus, marine stratocumulus, and deep convective cumulonimbus. A Monte Carlo code is used to run 3D and ICA broadband radiative transfer calculations; we calculate the top-of-atmosphere (TOA) reflected flux and surface irradiance biases as functions of solar zenith angle for these three cloud regimes. Finally, we use satellite observations of cloud water path (CWP) climatology, and the robust correlation between CWP and TOA flux bias in our LES sample, to roughly estimate the impact of neglecting 3D cloud radiative effects on a global scale. We find that the flux bias is largest at small zenith angles and for deeper clouds, while the albedo bias is most prominent for large zenith angles. In the tropics, the annual-mean shortwave radiative flux bias is estimated to be 3.1±1.6 W m−2, reaching as much as 6.5 W m−2 locally.


2015 ◽  
Vol 8 (5) ◽  
pp. 1935-1949 ◽  
Author(s):  
A. Kylling ◽  
N. Kristiansen ◽  
A. Stohl ◽  
R. Buras-Schnell ◽  
C. Emde ◽  
...  

Abstract. Volcanic ash is commonly observed by infrared detectors on board Earth-orbiting satellites. In the presence of ice and/or liquid-water clouds, the detected volcanic ash signature may be altered. In this paper the sensitivity of detection and retrieval of volcanic ash to the presence of ice and liquid-water clouds was quantified by simulating synthetic equivalents to satellite infrared images with a 3-D radiative transfer model. The sensitivity study was made for the two recent eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011) using realistic water and ice clouds and volcanic ash clouds. The water and ice clouds were taken from European Centre for Medium-Range Weather Forecast (ECMWF) analysis data and the volcanic ash cloud fields from simulations by the Lagrangian particle dispersion model FLEXPART. The radiative transfer simulations were made both with and without ice and liquid-water clouds for the geometry and channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The synthetic SEVIRI images were used as input to standard reverse absorption ash detection and retrieval methods. Ice and liquid-water clouds were on average found to reduce the number of detected ash-affected pixels by 6–12%. However, the effect was highly variable and for individual scenes up to 40% of pixels with mass loading >0.2 g m−2 could not be detected due to the presence of water and ice clouds. For coincident pixels, i.e. pixels where ash was both present in the FLEXPART (hereafter referred to as "Flexpart") simulation and detected by the algorithm, the presence of clouds overall increased the retrieved mean mass loading for the Eyjafjallajökull (2010) eruption by about 13%, while for the Grímsvötn (2011) eruption ash-mass loadings the effect was a 4% decrease of the retrieved ash-mass loading. However, larger differences were seen between scenes (standard deviations of ±30 and ±20% for Eyjafjallajökull and Grímsvötn, respectively) and even larger ones within scenes. The impact of ice and liquid-water clouds on the detection and retrieval of volcanic ash, implies that to fully appreciate the location and amount of ash, hyperspectral and spectral band measurements by satellite instruments should be combined with ash dispersion modelling.


2021 ◽  
Author(s):  
Filippo Calì Quaglia ◽  
Daniela Meloni ◽  
Alcide Giorgio di Sarra ◽  
Tatiana Di Iorio ◽  
Virginia Ciardini ◽  
...  

&lt;p&gt;Extended and intense wildfires occurred in Northern Canada and, unexpectedly, on the Greenlandic West coast during summer 2017. The thick smoke plume emitted into the atmosphere was transported to the high Arctic, producing one of the largest impacts ever observed in the region. Evidence of Canadian and Greenlandic wildfires was recorded at the Thule High Arctic Atmospheric Observatory (THAAO, 76.5&amp;#176;N, 68.8&amp;#176;W, www.thuleatmos-it.it) by a suite of instruments managed by ENEA, INGV, Univ. of Florence, and NCAR. Ground-based observations of the radiation budget have allowed quantification of the surface radiative forcing at THAAO.&amp;#160;&lt;/p&gt;&lt;p&gt;Excess biomass burning chemical tracers such as CO, HCN, H2CO, C2H6, and NH3 were&amp;#160; measured in the air column above Thule starting from August 19 until August 23. The aerosol optical depth (AOD) reached a peak value of about 0.9 on August 21, while an enhancement of wildfire compounds was&amp;#160; detected in PM10. The measured shortwave radiative forcing was -36.7 W/m2 at 78&amp;#176; solar zenith angle (SZA) for AOD=0.626.&lt;/p&gt;&lt;p&gt;MODTRAN6.0 radiative transfer model (Berk et al., 2014) was used to estimate the aerosol radiative effect and the heating rate profiles at 78&amp;#176; SZA. Measured temperature profiles, integrated water vapour, surface albedo, spectral AOD and aerosol extinction profiles from CALIOP onboard CALIPSO were used as model input. The peak&amp;#160; aerosol heating rate (+0.5 K/day) was&amp;#160; reached within the aerosol layer between 8 and 12 km, while the maximum radiative effect (-45.4 W/m2) is found at 3 km, below the largest aerosol layer.&lt;/p&gt;&lt;p&gt;The regional impact of the event that occurred on August 21 was investigated using a combination of atmospheric radiative transfer modelling with measurements of AOD and ground surface albedo from MODIS. The aerosol properties used in the radiative transfer model were constrained by in situ measurements from THAAO. Albedo data over the ocean have been obtained from Jin et al. (2004). Backward trajectories produced through HYSPLIT simulations (Stein et al., 2015) were also employed to trace biomass burning plumes.&lt;/p&gt;&lt;p&gt;The radiative forcing efficiency (RFE) over land and ocean was derived, finding values spanning from -3 W/m2 to -132 W/m2, depending on surface albedo and solar zenith angle. The fire plume covered a vast portion of the Arctic, with large values of the daily shortwave RF (&lt; -50 W/m2) lasting for a few days. This large amount of aerosol is expected to influence cloud properties in the Arctic, producing significant indirect radiative effects.&lt;/p&gt;


2020 ◽  
Author(s):  
Clark Weaver ◽  
Gordon Labow ◽  
Dong Wu ◽  
Pawan K. Bhartia ◽  
David Haffner

&lt;p&gt;A suite of NASA/NOAA UV (340nm) sensing satellite instruments, starting with Nimbus-7 SBUV in 1980, provides a global long-term record of cloud trends and cloud response from ENSO events. We present new method to inter-calibrate the radiances of all the SBUV instruments and the Suomi NPP OMPS mapper over both the East Antarctic Plateau and Greenland ice sheets during summer. First, the strong solar zenith angle dependence from the intensities are removed using an empirical approach rather than a radiative transfer model. Then small multiplicative adjustments are made to these solar zenith angle normalized intensities in order to minimize differences when two or more instruments temporally overlap. While the calibrated intensities show a negligible long-term trend over Antarctica, and a statistically insignificant UV albedo trend of -0.05 % per decade over the interior of Greenland, there are small episodic reductions in&amp;#160;intensities which are often seen by multiple instruments. Three of these darkening events are explained by boreal forest fires using trajectory modeling analysis. Other events are caused by surface melting or volcanoes. We estimate a 2-sigma uncertainty&amp;#160;of 0.35% for the calibrated radiances. Finally, we connect the estimated radiance uncertainties, derived from our calibration approach, to the tropical and midlatitude UV cloud albedo trends.&lt;/p&gt;


2020 ◽  
Author(s):  
Dominic Fawcett ◽  
Jonathan Bennie ◽  
Karen Anderson

&lt;p&gt;The light environment within vegetated landscapes is a key driver of microclimate, creating varied habitats over small spatial extents and controls the distribution of understory plant species. Modelling spatial variations of light at these scales requires finely resolved (&lt; 1 m) information on topography and canopy properties. We demonstrate an approach to modelling spatial distributions and temporal progression of understory photosynthetically active radiation (PAR) utilising a three dimensional radiative transfer model (discrete anisotropic radiative transfer model: DART) where the scene is parameterised by drone-based data.&lt;/p&gt;&lt;p&gt;The study site, located in west Cornwall, UK, includes a small mixed woodland as well as isolated free-standing trees. Data were acquired from March to August 2019. Vegetation height and distribution were derived from point clouds generated from drone image data using structure-from-motion (SfM) photogrammetry. These data were supplemented by multi-temporal multispectral imagery (Parrot Sequoia camera) which were used to generate an empirical model by relating a vegetation index to plant area index derived from hemispherical photography taken over the same time period. Simulations of the 3D radiative budget were performed for the PAR wavelength interval (400 &amp;#8211; 700 nm) using DART.&lt;/p&gt;&lt;p&gt;Besides maps of instantaneous above and below canopy irradiance, we provide models of daily light integrals (DLI) which are assessed against field validation measurements with PAR quantum sensors. We find relatively good agreement for simulated PAR in the woodland. The impact of simplifying assumptions regarding leaf angular distributions and optical properties are discussed. Finally, further opportunities which fine-grained drone data can provide in a radiative transfer context are highlighted.&lt;/p&gt;


2020 ◽  
Author(s):  
Huan Yu ◽  
Arve Kylling ◽  
Claudia Emde ◽  
Bernhard Mayer ◽  
Kerstin Stebel ◽  
...  

&lt;p&gt;Operational retrievals of tropospheric trace gases from space-borne spectrometers are made using 1D radiative transfer models. To minimize cloud effects generally only partially cloudy pixels are analysed using simplified cloud contamination treatments based on radiometric cloud fraction estimates and photon path length corrections based on oxygen collision pair (O&lt;sub&gt;2&lt;/sub&gt;-O&lt;sub&gt;2&lt;/sub&gt;) or O&lt;sub&gt;2&lt;/sub&gt;A-absorption band measurements. In reality, however, the impact of clouds can be much more complex, involving scattering of clouds in neighbouring pixels and cloud shadow effects. Therefore, to go one step further, other correction methods may be envisaged that use sub-pixel cloud information from co-located imagers. Such methods require an understanding of the impact of clouds on the real 3D radiative transfer. We quantify this impact using the MYSTIC 3D radiative transfer model. The generation of realistic 3D input cloud fields, needed by MYSTIC (or any other 3D radiative transfer model), is non-trivial. We use cloud data generated by the ICOsahedral Non-hydrostatic (ICON) atmosphere model for a region including Germany, the Netherlands and parts of other surrounding countries. The model simulates realistic liquid and ice clouds with a horizontal spatial resolution of 156 m and it has been validated against ground-based and satellite-based observational data.&lt;/p&gt;&lt;p&gt;As a trace gas example, we study NO&lt;sub&gt;2&lt;/sub&gt;, a key tropospheric trace gas measured by the atmospheric Sentinels. The MYSTIC 3D model simulates visible spectra, which are ingested in standard DOAS retrieval algorithms to retrieve the NO&lt;sub&gt;2&lt;/sub&gt; column amount. Spectra are simulated for a number of realistic cloud scenarios, snow free surface albedos, and solar and satellite geometries typical of low-earth and geostationary orbits. The retrieved NO&lt;sub&gt;2&lt;/sub&gt; vertical column densities (VCD) are compared with the true values to identify conditions where 3D cloud effects lead to significant biases on the NO&lt;sub&gt;2&lt;/sub&gt; VCDs. A variety of possible mitigation strategies for such pixels are then explored.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document