scholarly journals The organic fraction of bubble-generated, accumulation mode Sea Spray Aerosol (SSA)

2009 ◽  
Vol 9 (5) ◽  
pp. 21399-21424 ◽  
Author(s):  
R. L. Modini ◽  
B. Harris ◽  
Z. D. Ristovski

Abstract. Recent studies have detected a dominant accumulation mode (~100 nm) in the Sea Spray Aerosol (SSA) number distribution. There is evidence to suggest that particles in this mode are composed primarily of organics. To investigate this hypothesis we conducted experiments on NaCl, artificial SSA and natural SSA particles with a Volatility-Hygroscopicity-Tandem-Differential-Mobility-Analyser (VH-TDMA). NaCl particles were atomiser generated and a bubble generator was constructed to produce artificial and natural SSA particles. Natural seawater samples for use in the bubble generator were collected from biologically active, terrestrially-affected coastal water in Moreton Bay, Australia. Differences in the VH-TDMA-measured volatility curves of artificial and natural SSA particles were used to investigate and quantify the organic fraction of natural SSA particles. Hygroscopic Growth Factor (HGF) data, also obtained by the VH-TDMA, were used to confirm the conclusions drawn from the volatility data. Both datasets indicated that the organic fraction of our natural SSA particles evaporated in the VH-TDMA over the temperature range 170–200°C. The organic volume fraction for 71–77 nm natural SSA particles was 8±6%. Organic volume fraction did not vary significantly with varying water residence time (40 s0 to 24 h) in the bubble generator or SSA particle diameter in the range 38–173 nm. At room temperature we measured shape- and Kelvin-corrected HGF at 90% RH of 2.46±0.02 for NaCl, 2.35±0.02 for artifical SSA and 2.26±0.02 for natural SSA particles. Overall, these results suggest that the natural accumulation mode SSA particles produced in these experiments contained only a minor organic fraction, which had little effect on hygroscopic growth. Our measurement of 8±6% is an order of magnitude below two previous measurements of the organic fraction in SSA particles of comparable sizes. Further studies with a variety of different seawaters are required to better quantify how much organic material is present in accumulation mode SSA.

2010 ◽  
Vol 10 (6) ◽  
pp. 2867-2877 ◽  
Author(s):  
R. L. Modini ◽  
B. Harris ◽  
Z. D. Ristovski

Abstract. Recent studies have detected a dominant accumulation mode (~100 nm) in the Sea Spray Aerosol (SSA) number distribution. There is evidence to suggest that particles in this mode are composed primarily of organics. To investigate this hypothesis we conducted experiments on NaCl, artificial SSA and natural SSA particles with a Volatility-Hygroscopicity-Tandem-Differential-Mobility-Analyser (VH-TDMA). NaCl particles were atomiser generated and a bubble generator was constructed to produce artificial and natural SSA particles. Natural seawater samples for use in the bubble generator were collected from biologically active, terrestrially-affected coastal water in Moreton Bay, Australia. Differences in the VH-TDMA-measured volatility curves of artificial and natural SSA particles were used to investigate and quantify the organic fraction of natural SSA particles. Hygroscopic Growth Factor (HGF) data, also obtained by the VH-TDMA, were used to confirm the conclusions drawn from the volatility data. Both datasets indicated that the organic fraction of our natural SSA particles evaporated in the VH-TDMA over the temperature range 170–200 °C. The organic volume fraction for 71–77 nm natural SSA particles was 8±6%. Organic volume fraction did not vary significantly with varying water residence time (40 s to 24 h) in the bubble generator or SSA particle diameter in the range 38–173 nm. At room temperature we measured shape- and Kelvin-corrected HGF at 90% RH of 2.46±0.02 for NaCl, 2.35±0.02 for artifical SSA and 2.26±0.02 for natural SSA particles. Overall, these results suggest that the natural accumulation mode SSA particles produced in these experiments contained only a minor organic fraction, which had little effect on hygroscopic growth. Our measurement of 8±6% is an order of magnitude below two previous measurements of the organic fraction in SSA particles of comparable sizes. We stress that our results were obtained using coastal seawater and they can't necessarily be applied on a regional or global ocean scale. Nevertheless, considering the order of magnitude discrepancy between this and previous studies, further research with independent measurement techniques and a variety of different seawaters is required to better quantify how much organic material is present in accumulation mode SSA.


2016 ◽  
Author(s):  
Sara D. Forestieri ◽  
Gavin C. Cornwell ◽  
Taylor M. Helgestad ◽  
Kathryn A. Moore ◽  
Christopher Lee ◽  
...  

Abstract. The extent to which water uptake influences the light scattering ability of marine sea spray aerosol (SSA) particles depends critically on SSA chemical composition. The organic fraction of SSA can increase during phytoplankton blooms, decreasing the salt content and therefore the hygroscopicity of the particles. In this study, subsaturated hygroscopic growth factors at 85 % relative humidity (GF(85 %)) of SSA particles were quantified during two induced phytoplankton blooms in marine aerosol reference tanks (MARTs). One MART was illuminated with fluorescent lights and the other was illuminated with sunlight, referred to as the "indoor" and "outdoor" MARTs, respectively. GF(85 %) values for SSA particles were derived from measurements of light scattering and particle size distributions, concurrently with online single particle and bulk aerosol composition measurements. During both microcosm experiments, the observed bulk average GF(85 %) values were depressed substantially relative to pure, inorganic sea salt, by 10 to 19 %, with a one (indoor MART) and six (outdoor MART) day lag between GF(85 %) depression and the peak chlorophyll-a concentrations. The fraction of organiccontaining SSA particles generally increased after the peak of the phytoplankton blooms. The GF(85 %) values were inversely correlated with the fraction of particles containing organic or other biological markers. This indicates these particles were less hygroscopic than the particles identified as predominately sea salt containing and demonstrates a clear relationship between SSA particle composition and the sensitivity of light scattering to variations in relative humidity. The implications of these observations to the direct climate effects of SSA particles are discussed.


2014 ◽  
Vol 31 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Ji Yeon Park ◽  
Sungil Lim ◽  
Kihong Park

Abstract Measurements of size distribution, hygroscopicity, and volatility of submicrometer sea spray particles produced by the bubble busting of artificial and natural seawater were conducted to determine their mixing state and volume fractions of hygroscopic and nonhygroscopic species or volatile and nonvolatile species. The particles sprayed from artificial seawater having insoluble silica particles were found to be an external mixture of two groups of particles having hygroscopic growth factors (HGFs) of 1.33 (an internal mixture of nonhygroscopic silica particles and hygroscopic salt species) and 1.68 (a similar mixture having more salt species) when the mass ratio of insoluble particles to dissolved salts was higher than 2. For sea spray particles from natural seawater, the external mixing was not significantly observed because of a high concentration of dissolved salts. The HGFs of sea spray particles (80–140 nm) from natural seawater were in the range of 1.70–1.76, which were lower than from pure artificial seawater (1.87), and the HGFs had no change before and after membrane filtration of seawater, suggesting that the sea spray particles from natural seawater contained a significant amount of nonhygroscopic dissolved organic matter in addition to hygroscopic salt species. The volume fraction of the nonhygroscopic species ranged from 20% to 29%, and the highest value was observed for seawater samples from the site where strong biological activity occurred, suggesting that biological materials played an important role in the formation of nonhygroscopic organic matter. Volatility measurements also identified the existence of volatile organic species in single particles from natural seawater, with the volume fraction of volatile species evaporated at 100°C being 4%–5%.


2020 ◽  
Author(s):  
Jonathan V. Trueblood ◽  
Alesia Nicosia ◽  
Anja Engel ◽  
Birthe Zäncker ◽  
Matteo Rinaldi ◽  
...  

Abstract. Ice nucleating particles (INP) have a large impact on the climate-relevant properties of clouds over the oceans. Studies have shown that sea spray aerosols (SSA), produced upon bursting of bubbles at the ocean surface, can be an important source of marine INP, particularly during periods of enhanced biological productivity. Recent mesocosm experiments using natural seawater spiked with nutrients have revealed that marine INP are derived from two separate classes of organic matter in SSA. Despite this finding, existing parameterizations for marine INP abundance are based solely on single variables such as total organic carbon (TOC) or SSA surface area, which may mask specific trends in the separate classes of INPs. The goal of this paper is to improve the understanding of the connection between ocean biology and marine INP abundance by reporting results from a field study and proposing a new parameterization of marine INP that accounts for the two associated classes of organic matter. The PEACETIME cruise took place from May 10 to June 10, 2017 in the Mediterranean Sea. Throughout the cruise, INP concentrations in the surface microlayer (SML) and in SSA produced using a plunging aquarium apparatus were continuously monitored while surface seawater (SSW) and SML biological properties were measured in parallel. The organic content of artificially generated SSA was also evaluated. A dust wet deposition event that occurred during the cruise increased the INP concentrations measured in the SML by an order of magnitude, in line with increases of iron in the SML and bacterial abundances. Increases of INPs in marine SSA (INPSSA) were not observed before a delay of three days compared to increases in the SML, and are likely a result of a strong influence of bulk SSW INP for the temperatures investigated (T = −18 °C for SSA, T = −16 °C for SSW). Results confirmed that INPSSA are divided into two classes depending on their associated organic matter. Here we find that warm (T ≥ −22 °C) INPSSA concentrations are correlated with water soluble organic matter in the SSA, but also to SSW parameters (POCSSW INPSSW,−16 °C) while cold INPSSA (T 


2015 ◽  
Vol 113 (21) ◽  
pp. 5797-5803 ◽  
Author(s):  
Paul J. DeMott ◽  
Thomas C. J. Hill ◽  
Christina S. McCluskey ◽  
Kimberly A. Prather ◽  
Douglas B. Collins ◽  
...  

Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using “dry” geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bernadette Rosati ◽  
Sigurd Christiansen ◽  
Anders Dinesen ◽  
Pontus Roldin ◽  
Andreas Massling ◽  
...  

AbstractSea spray aerosol (SSA) contributes significantly to natural aerosol particle concentrations globally, in marine areas even dominantly. The potential changes of the omnipresent inorganic fraction of SSA due to atmospheric ageing is largely unexplored. In the atmosphere, SSA may exist as aqueous phase solution droplets or as dried solid or amorphous particles. We demonstrate that ageing of liquid NaCl and artificial sea salt aerosol by exposure to ozone and UV light leads to a substantial decrease in hygroscopicity and cloud activation potential of the dried particles of the same size. The results point towards surface reactions on the liquid aerosols that are more crucial for small particles and the formation of salt structures with water bound within the dried aerosols, termed hydrates. Our findings suggest an increased formation of hydrate forming salts during ageing and the presence of hydrates in dried SSA. Field observations indicate a reduced hygroscopic growth factor of sub-micrometre SSA in the marine atmosphere compared to fresh laboratory generated NaCl or sea salt of the same dry size, which is typically attributed to organic matter or sulphates. Aged inorganic sea salt offers an additional explanation for such a measured reduced hygroscopic growth factor and cloud activation potential.


2020 ◽  
Author(s):  
Bernadette Rosati ◽  
Sigurd Christiansen ◽  
Anders Dinesen ◽  
Pontus Roldin ◽  
Andreas Massling ◽  
...  

Abstract Sea spray aerosol (SSA) contributes significantly to natural aerosol particle concentrations globally, in marine areas even dominantly. The potential changes of the omnipresent inorganic fraction of SSA due to atmospheric ageing is largely unexplored. We demonstrate that ageing of liquid NaCl and artificial sea salt aerosol by exposure to ozone and UV light leads to a substantial decrease in hygroscopicity and cloud activation potential. The results point towards surface reactions that are more crucial for small particles and the formation of salt structures with water bound within the aerosols, termed hydrates. Our findings suggest an increased formation of hydrate forming salts during ageing and the presence of hydrates in dried SSA. Field observations indicate a reduced hygroscopic growth of sub-micrometre SSA in the marine atmosphere compared to pure NaCl which is typically attributed to organic matter or sulphates. Aged inorganic sea salt offers an additional explanation for reduced hygroscopicity and cloud activation potential.


2017 ◽  
Vol 10 (12) ◽  
pp. 4915-4925 ◽  
Author(s):  
Tamara Pinterich ◽  
Steven R. Spielman ◽  
Yang Wang ◽  
Susanne V. Hering ◽  
Jian Wang

Abstract. We present a humidity-controlled fast integrated mobility spectrometer (HFIMS) for rapid particle hygroscopicity measurements. The HFIMS consists of a differential mobility analyzer (DMA), a relative humidity (RH) control unit and a water-based FIMS (WFIMS) coupled in series. The WFIMS (Pinterich et al., 2017) combines the fast integrated mobility spectrometer (Kulkarni and Wang, 2006a, b) with laminar flow water condensation methodologies (Hering and Stolzenburg, 2005; Spielman et al., 2017). Inside the WFIMS, particles of different electrical mobilities are spatially separated in an electric field, condensationally enlarged and imaged to provide 1 Hz measurements of size distribution spanning a factor of  ∼ 3 in particle diameter, which is sufficient to cover the entire range of growth factor (GF) for atmospheric aerosol particles at 90 % RH. By replacing the second DMA of a traditional hygroscopicity tandem DMA (HTDMA) system with the WFIMS, the HFIMS greatly increases the speed of particle growth factor measurement. The performance of the HFIMS was evaluated using NaCl particles with well-known hygroscopic growth behavior and further through measurements of ambient aerosols. Results show that the HFIMS can reproduce, within 2 %, the literature values for hygroscopic growth of NaCl particles. NaCl deliquescence was observed between 76 and 77 % RH in agreement with the theoretical value of 76.5 % (Ming and Russell, 2001), and efflorescence relative humidity (43 %) was found to lie within the RH range of 41 to 56 % reported in the literature. Ambient data indicate that the HFIMS can measure the hygroscopic growth of five standard dry particle sizes ranging from 35 to 165 nm within less than 3 min, which makes it about 1 order of magnitude faster than traditional HTDMA systems.


2017 ◽  
Vol 114 (27) ◽  
pp. 6978-6983 ◽  
Author(s):  
Xiaofei Wang ◽  
Grant B. Deane ◽  
Kathryn A. Moore ◽  
Olivia S. Ryder ◽  
M. Dale Stokes ◽  
...  

The oceans represent a significant global source of atmospheric aerosols. Sea spray aerosol (SSA) particles comprise sea salts and organic species in varying proportions. In addition to size, the overall composition of SSA particles determines how effectively they can form cloud droplets and ice crystals. Thus, understanding the factors controlling SSA composition is critical to predicting aerosol impacts on clouds and climate. It is often assumed that submicrometer SSAs are mainly formed by film drops produced from bursting bubble-cap films, which become enriched with hydrophobic organic species contained within the sea surface microlayer. In contrast, jet drops formed from the base of bursting bubbles are postulated to mainly produce larger supermicrometer particles from bulk seawater, which comprises largely salts and water-soluble organic species. However, here we demonstrate that jet drops produce up to 43% of total submicrometer SSA number concentrations, and that the fraction of SSA produced by jet drops can be modulated by marine biological activity. We show that the chemical composition, organic volume fraction, and ice nucleating ability of submicrometer particles from jet drops differ from those formed from film drops. Thus, the chemical composition of a substantial fraction of submicrometer particles will not be controlled by the composition of the sea surface microlayer, a major assumption in previous studies. This finding has significant ramifications for understanding the factors controlling the mixing state of submicrometer SSA particles and must be taken into consideration when predicting SSA impacts on clouds and climate.


2019 ◽  
Author(s):  
Luke T. Cravigan ◽  
Marc D. Mallet ◽  
Petri Vaattovaara ◽  
Mike J. Harvey ◽  
Cliff S. Law ◽  
...  

Abstract. The aerosol driven radiative effects on marine low-level cloud represent a large uncertainty in climate simulations, in particular over the Southern Ocean, which is also an important region for sea spray aerosol production. Observations of sea spray aerosol organic enrichment and the resulting impact on water uptake over the remote southern hemisphere are scarce, and are therefore the region is under-represented in existing parameterisations. The Surface Ocean Aerosol Production (SOAP) voyage was a 23 day voyage which sampled three phytoplankton blooms in the highly productive water of the Chatham Rise, east of New Zealand. In this study we examined the enrichment of organics to nascent sea spray aerosol and the modifications to sea spray aerosol water uptake using in-situ chamber measurements of seawater samples taken during the SOAP voyage. Primary marine organics contributed up to 23 % of the sea spray mass for particles with diameter less than approximately 1 μm, and up to 87 % of the particle volume in the Aitken mode. The composition of the organic fraction was consistent throughout the voyage and was largely comprised of a polysaccharide-like component, characterised by very low alkane to hydroxyl concentration ratios of approximately 0.1–0.2. The enrichment of organics was compared to the output from the chlorophyll-a based sea spray aerosol parameterisation suggested by Gantt et al. (2011) and the OCEANFILMS models. OCEANFILMS improved on the representation of the organic fraction predicted using chlorophyll-a, in particular when the co-adsoprtion of polysaccharides was included, however the model still under predicted the proportion of polysaccharides by an average of 33 %. Nascent sea spray aerosol hygroscopic growth factors averaged 1.93 ± 0.08, and did not decrease with increasing sea spray aerosol organic fractions. The observed hygroscopicity was greater than expected from the assumption of full solubility, particularly during the most productive phytoplankton bloom (B1), during which organic fractions were greater than approximately 0.4. The water uptake behaviour observed in this study is consistent with that observed for other measurements of phytoplankton blooms, and was attributed to the surface partitioning of the organic components which leads to a decrease in particle surface tension and an increase in hygroscopicity. The compressed film model was used to estimate the influence of surface partitioning and the error in the modelled hygroscopicity was low only when the entire organic fraction was available to partition to the particle surface. The modelled sea spray aerosol hygroscopicity at high organic fractions was underestimated when only a portion of the organic component was available to be partitioned to the surface. The findings from the SOAP voyage highlight the influence of biologically-sourced organics on sea spray aerosol composition, these data improve the capacity to parameterise sea spray aerosol organic enrichment and water uptake.


Sign in / Sign up

Export Citation Format

Share Document