scholarly journals Development and application of the modelling system J2000-S for the EU-water framework directive

2007 ◽  
Vol 11 ◽  
pp. 123-130 ◽  
Author(s):  
M. Fink ◽  
P. Krause ◽  
S. Kralisch ◽  
U. Bende-Michl ◽  
W.-A. Flügel

Abstract. The scientific sound definition of measures to achieve the goals of the EU water framework directive (WFD) acquires spatially distributed analyses of the water and substance dynamics in meso- to macro-scale catchments. For this purpose, modelling tools or systems are needed which are robust and fast enough to be applied on such scales, but which are also able to simulate the impact of changes on single fields or small areas of a specific land use in the catchment. To face these challenges, we combined the fully-distributed hydrological model J2000 with the nitrogen transport routines of the Soil Water Assessment Tool SWAT model, which are normally applied in a semi-distributive approach. With this combination, we could extend the quantitative focus of J2000 with qualitative processes and could overcome the semi-distributed limitation of SWAT. For the implementation and combination of the components, we used the Jena Adaptable Modelling System JAMS (Kralisch and Krause, 2006) which helped tremendously in the relatively rapid and easy development of the new resultant model J2000-S (J2000-Substance). The modelling system was applied in the upper Gera watershed, located in Thuringia, Germany. The catchment has an area of 844 km2 and includes three of the typical landscape forms of Thuringia. The application showed, that the new modelling system was able to reproduce the daily hydrological as well as the nitrogen dynamics with a sufficient quality. The paper will describe the results of the new model and compare them with the results obtained with the original semi-distributed application of SWAT.

2021 ◽  
Vol 27 (3) ◽  
pp. 48-67
Author(s):  
M. O’Reilly ◽  
J. Boyle ◽  
S. Nowacki ◽  
M. Elliott ◽  
R. Foster

The history of monitoring transitional water fish in Scotland is briefly outlined. The requirements of the EU Water Framework Directive are explained and how this applies to the monitoring of transitional water fish communities in Scotland is described. The development of a monitoring programme for Scotland is outlined, including sampling methods and strategies. Six transitional waters were selected as representative for Scotland covering three different types of transitional water. A multi-metric tool, the Transitional Water Fish Classification Index was used to assess the ecological status of the fish communities in these waters and the operation of the different metrics and the creation of appropriate reference conditions is explained. The assessment tool was applied to survey data from 2005 to 2018, although only the more recent data fully met the tool requirements. The species composition and abundances in the respective transitional waters were compared. The fully valid surveys were all classed as of Good or High status, indicating the fish communities in all the representative transitional waters appeared to be in good ecological health. The efficacy of the different metrics is considered and some issues with Metric 2, enumerating migratory species, are discussed at length. A new multi-metric tool, the Estuarine Multi-metric Fish Index, is briefly discussed and its introduction for the assessments in Scotland is recommended.


2007 ◽  
Vol 11 ◽  
pp. 101-105
Author(s):  
H. Nacken

Abstract. Hydromorphological deficits are of real concern regarding the goals of the European Water Framework Directive to reach a good ecological status. The effects of measures that change the morphological structure of a river is hard to predict. Existing methods to simulate this process in a traditional numerical model can not be applied to whole river systems. Using a rule-based modelling concept to find feasible measures and predict the impact of those measures is a very promising solution.


2013 ◽  
Vol 726-731 ◽  
pp. 3792-3798
Author(s):  
Wen Ju Zhao ◽  
Wei Sun ◽  
Zong Li Li ◽  
Yan Wei Fan ◽  
Jian Shu Song ◽  
...  

SWAT (Soil and Water Assessment Tool) model is one of distributed hydrological model, based on spatial data offered by GIS and RS. This article mainly introduces the SWAT model principle, structure, and it is the application of stream flow simulation in China and other countries, then points out the deficiency existing in the process of model research. In order to service in water resources management work better, experts and scholars further research the rate constant and uncertainty of the simplification of the model parameters, and the combination of RS and GIS to use, and hydrological scale problems.


AMBIO ◽  
2021 ◽  
Author(s):  
Bent T. Christensen ◽  
Birger F. Pedersen ◽  
Jørgen E. Olesen ◽  
Jørgen Eriksen

AbstractThe EU Water Framework Directive (WFD) aims to protect the ecological status of coastal waters. To establish acceptable boundaries between good and moderate ecological status, the WFD calls for reference conditions practically undisturbed by human impact. For Denmark, the nitrogen (N) concentrations present around year 1900 have been suggested to represent reference conditions. As the N load of coastal waters relates closely to runoff from land, any reduction in load links to agricultural activity. We challenge the current use of historical N balances to establish WFD reference conditions and initiate an alternative approach based on parish-level land-use statistics collected 1896/1900 and N concentrations in root zone percolates from experiments with year 1900-relevant management. This approach may be more widely applicable for landscapes with detailed historic information on agricultural activity. Using this approach, we find an average N concentration in root zone percolates that is close to that of current agriculture. Thus, considering Danish coastal waters to be practically unaffected by human activity around year 1900 remains futile as 75% of the land area was subject to agricultural activity with a substantial potential for N loss to the environment. It appears unlikely that the ecological state of coastal waters around year 1900 may serve as WFD reference condition.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


2015 ◽  
Vol 6 (3) ◽  
pp. 426-430
Author(s):  
David Taylor

The current application of the hazardous substances provisions of Article 16 of the EU Water Framework Directive are in fundamental conflict with a number of other Directives and Regulations controlling the use of those hazardous substances that are currently essential to the wellbeing of the Community and its citizens. There is a simple solution to this conflict although reaching political agreement in such a polarised area may prove to be impossible.


AMBIO ◽  
2011 ◽  
Vol 40 (2) ◽  
pp. 210-220 ◽  
Author(s):  
Monica Hammer ◽  
Berit Balfors ◽  
Ulla Mörtberg ◽  
Mona Petersson ◽  
Andrew Quin

Hydrology ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 17 ◽  
Author(s):  
Sekela Twisa ◽  
Shija Kazumba ◽  
Mathew Kurian ◽  
Manfred F. Buchroithner

Understanding the variation in the hydrological response of a basin associated with land use changes is essential for developing management strategies for water resources. The impact of hydrological changes caused by expected land use changes may be severe for the Wami river system, given its role as a crucial area for water, providing food and livelihoods. The objective of this study is to examine the influence of land use changes on various elements of the hydrological processes of the basin. Hybrid classification, which includes unsupervised and supervised classification techniques, is used to process the images (2000 and 2016), while CA–Markov chain analysis is used to forecast and simulate the 2032 land use state. In the current study, a combined approach—including a Soil and Water Assessment Tool (SWAT) model and Partial Least Squares Regression (PLSR)—is used to explore the influences of individual land use classes on fluctuations in the hydrological components. From the study, it is evident that land use has changed across the basin since 2000 (which is expected to continue in 2032), as well as that the hydrological effects caused by land use changes were observed. It has been found that the major land use changes that affected hydrology components in the basin were expansion of cultivation land, built-up area and grassland, and decline in natural forests and woodland during the study period. These findings provide baseline information for decision-makers and stakeholders concerning land and water resources for better planning and management decisions in the basin resources’ use.


Sign in / Sign up

Export Citation Format

Share Document