scholarly journals 2016 Central Italy Earthquakes: comparison between GPS signals and low-cost distributed MEMS arrays

2019 ◽  
Vol 51 ◽  
pp. 1-14 ◽  
Author(s):  
Nicola Cenni ◽  
Jacopo Boaga ◽  
Filippo Casarin ◽  
Giancarlo De Marchi ◽  
Maria Rosa Valluzzi ◽  
...  

Abstract. Modern seismic ground-motion sensors have reached an excellent performance quality in terms of dynamic range and bandwidth resolution. The weakest point in the recording of seismic events remains spatial sampling and spatial resolution, due to the limited number of installed sensors. A significant improvement in spatial resolution can be achieved by the use of non-conventional motion sensors, such as low-cost distributed sensors arrays or positioning systems, capable of increasing the density of classical seismic recording networks. In this perspective, we adopted micro-electro mechanical system (MEMS) sensors to integrate the use of standard accelerometers for moderate-to-strong seismic events. In addition, we analyse high-rate distributed positioning system data that also record soil motion. In this paper, we present data from the 2016 Central Italy earthquakes as recorded by a spatially dense prototype MEMS array installed in the proximity of the epicentral area, and we compare the results to the signal of local 1s GPS stations. We discuss advantages and limitations of this joint approach, reaching the conclusion that such low-cost sensors and the use of high rate GPS signal could be an effective choice for integrate the spatial density of stations providing strong-motion parameters.

2019 ◽  
Vol 219 (3) ◽  
pp. 1757-1772 ◽  
Author(s):  
Jianfei Zang ◽  
Caijun Xu ◽  
Guanxu Chen ◽  
Qiang Wen ◽  
Shijie Fan

SUMMARY In traditional tight integration of high-rate GNSS and strong motion sensors, an appropriate process variance is crucial for obtaining accurate broad-band coseismic deformations. In this paper, instead of using a subjectively empirical value, we present an approach for determining the process variance adaptively based on the adaptive Kalman filter for real-time use. The performance of the approach was validated by the colocated stations collected during the 2010 Mw 7.2 earthquake in El-Mayor, 2016 Mw 7.8 earthquake in New Zealand and 2016 Mw 6.5 earthquake in central Italy. The results show that this method complements the advantages of GNSS and strong motion accelerometers and can provide more accurate coseismic waveforms especially during the strong shaking period, due to the ability of the method to adjust the process variance in real time according to the actual status of the station. In addition, this method is also free from the influence of the baseline shift. Testing of the new method for the integration of strong motion and multi-GNSS indicates that multi-GNSS has an obvious improvement in the precision while single GPS has a poor observation condition.


2018 ◽  
Vol 18 (16) ◽  
pp. 6644-6659 ◽  
Author(s):  
Paola Pierleoni ◽  
Simone Marzorati ◽  
Chiara Ladina ◽  
Sara Raggiunto ◽  
Alberto Belli ◽  
...  

2020 ◽  
Vol 18 ◽  
Author(s):  
Mohammed Hussien Ahmed ◽  
Sherief Abd-Elsalam ◽  
Aya Mohammed Mahrous

Introduction: Helicobacter pylori eradication remains a problematic issue. We are in an urgent need for finding a treatment regimen that achieves eradication at a low cost and less side effect. Recent published results showing a high rate of resistance and with clarithromycin-based treatment regimens. The aim of the study was to compare moxifloxacin therapy and classic clarithromycin triple therapy in H. pylori eradication. Methods: This was a pilot study that enrolled 60 patients with helicobacter pylori associated gastritis. Diagnosis was done by assessment of H. pylori Ag in the stool. The patients were randomly assigned to receive either moxifloxacin based therapy (Group A), or clarithromycin based therapy (Group B) for two weeks. We stopped the treatment for another two weeks then reevaluation for cure was done. Results: 90 % of patients had negative H. pylori Ag in the stool after 2 weeks of stoppage of the treatment in group A versus 66.7 % in Group B. None of the patients in both groups had major side effects. Conclusion: Moxifloxacin-based therapy showed higher eradication power and less resistance when compared to clarithromycin triple therapy.


Author(s):  
D Spallarossa ◽  
M Cattaneo ◽  
D Scafidi ◽  
M Michele ◽  
L Chiaraluce ◽  
...  

Summary The 2016–17 central Italy earthquake sequence began with the first mainshock near the town of Amatrice on August 24 (MW 6.0), and was followed by two subsequent large events near Visso on October 26 (MW 5.9) and Norcia on October 30 (MW 6.5), plus a cluster of 4 events with MW > 5.0 within few hours on January 18, 2017. The affected area had been monitored before the sequence started by the permanent Italian National Seismic Network (RSNC), and was enhanced during the sequence by temporary stations deployed by the National Institute of Geophysics and Volcanology and the British Geological Survey. By the middle of September, there was a dense network of 155 stations, with a mean separation in the epicentral area of 6–10 km, comparable to the most likely earthquake depth range in the region. This network configuration was kept stable for an entire year, producing 2.5 TB of continuous waveform recordings. Here we describe how this data was used to develop a large and comprehensive earthquake catalogue using the Complete Automatic Seismic Processor (CASP) procedure. This procedure detected more than 450,000 events in the year following the first mainshock, and determined their phase arrival times through an advanced picker engine (RSNI-Picker2), producing a set of about 7 million P- and 10 million S-wave arrival times. These were then used to locate the events using a non-linear location (NLL) algorithm, a 1D velocity model calibrated for the area, and station corrections and then to compute their local magnitudes (ML). The procedure was validated by comparison of the derived data for phase picks and earthquake parameters with a handpicked reference catalogue (hereinafter referred to as ‘RefCat’). The automated procedure takes less than 12 hours on an Intel Core-i7 workstation to analyse the primary waveform data and to detect and locate 3000 events on the most seismically active day of the sequence. This proves the concept that the CASP algorithm can provide effectively real-time data for input into daily operational earthquake forecasts, The results show that there have been significant improvements compared to RefCat obtained in the same period using manual phase picks. The number of detected and located events is higher (from 84,401 to 450,000), the magnitude of completeness is lower (from ML 1.4 to 0.6), and also the number of phase picks is greater with an average number of 72 picked arrival for a ML = 1.4 compared with 30 phases for RefCat using manual phase picking. These propagate into formal uncertainties of ± 0.9km in epicentral location and ± 1.5km in depth for the enhanced catalogue for the vast majority of the events. Together, these provide a significant improvement in the resolution of fine structures such as local planar structures and clusters, in particular the identification of shallow events occurring in parts of the crust previously thought to be inactive. The lower completeness magnitude provides a rich data set for development and testing of analysis techniques of seismic sequences evolution, including real-time, operational monitoring of b-value, time-dependent hazard evaluation and aftershock forecasting.


2015 ◽  
Vol 184 ◽  
pp. 202-214 ◽  
Author(s):  
Abbas Mehrabadi ◽  
Rupert Craggs ◽  
Mohammed M. Farid

Coral Reefs ◽  
2021 ◽  
Author(s):  
E. Casoli ◽  
D. Ventura ◽  
G. Mancini ◽  
D. S. Pace ◽  
A. Belluscio ◽  
...  

AbstractCoralligenous reefs are characterized by large bathymetric and spatial distribution, as well as heterogeneity; in shallow environments, they develop mainly on vertical and sub-vertical rocky walls. Mainly diver-based techniques are carried out to gain detailed information on such habitats. Here, we propose a non-destructive and multi-purpose photo mosaicking method to study and monitor coralligenous reefs developing on vertical walls. High-pixel resolution images using three different commercial cameras were acquired on a 10 m2 reef, to compare the effectiveness of photomosaic method to the traditional photoquadrats technique in quantifying the coralligenous assemblage. Results showed very high spatial resolution and accuracy among the photomosaic acquired with different cameras and no significant differences with photoquadrats in assessing the assemblage composition. Despite the large difference in costs of each recording apparatus, little differences emerged from the assemblage characterization: through the analysis of the three photomosaics twelve taxa/morphological categories covered 97–99% of the sampled surface. Photo mosaicking represents a low-cost method that minimizes the time spent underwater by divers and capable of providing new opportunities for further studies on shallow coralligenous reefs.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 214
Author(s):  
Siming Weng ◽  
Pei Yuan ◽  
Wei Zhuang ◽  
Dongliang Zhang ◽  
Fei Luo ◽  
...  

For the development of minimized and high-rate photonic-integrated fiber Bragg grating interrogation (FBGI) systems, arrayed waveguide grating (AWG) has been widely used as one of the critical components. In this paper, we present an 8-channel SOI-based AWG for a photonic integrated FBG interrogation microsystem. The channel spacing of the AWG is designed to be 3 nm to meet a high-dynamic-range demodulation requirement. The core size of the fabricated AWG is about 335 × 335 μm2. The simulation results and experimental results are in high agreement, showing that AWG has a fine transmission spectrum with crosstalk below −16 dB, nonuniformity below 0.4 dB, insertion loss below −6.35 dB, 3 dB bandwidth about 1.3 nm and 10 dB bandwidth of 2.3 nm. The proposed AWG can be applied perfectly to the SOI-based AWG demodulation microsystem, exhibiting a large dynamic range of 1.2 nm, the resolution for measurements is 1.27 pm and a high accuracy of 20.6 pm.


2020 ◽  
Vol 3 (4) ◽  
pp. 42
Author(s):  
Albert Sabban

The development of compact passive and active wearable circular patch metamaterials antennas for communication, Internet of Things (IoT) and biomedical systems is presented in this paper. Development of compact efficient low-cost wearable antennas are one of the most significant challenges in development of wearable communication, IoT and medical systems. Moreover, the advantage of an integrated compact low-cost feed network is attained by integrating the antenna feed network with the antennas on the same printed board. The efficiency of communication systems may be increased by using efficient passive and active antennas. The system dynamic range may be improved by connecting amplifiers to the printed antenna feed line. Design, design considerations, computed and measured results of wearable circular patch meta-materials antennas with high efficiency for 5G, IoT and biomedical applications are presented in this paper. The circular patch antennas electrical parameters on the human body were analyzed by using commercial full-wave software. The circular patch metamaterial wearable antennas are compact and flexible. The directivity and gain of the antennas with Circular Split-Ring Resonators (CSRR) is higher by 2.5dB to 3dB than the antennas without CSRR. The resonant frequency of the antennas without CSRR is higher by 6% to 9% than the antennas with CSRR. The computed and measured bandwidth of the stacked circular patch wearable antenna with CSRR for IoT and medical applications is around 12%, for S11 lover than −6dB. The gain of the circular patch wearable antenna with CSRR is around 8dBi.


2005 ◽  
Vol 21 (1) ◽  
pp. 91-124 ◽  
Author(s):  
John R. Evans ◽  
Robert H. Hamstra ◽  
Christoph Kündig ◽  
Patrick Camina ◽  
John A. Rogers

The ability of a strong-motion network to resolve wavefields can be described on three axes: frequency, amplitude, and space. While the need for spatial resolution is apparent, for practical reasons that axis is often neglected. TREMOR is a MEMS-based accelerograph using wireless Internet to minimize lifecycle cost. TREMOR instruments can economically augment traditional ones, residing between them to improve spatial resolution. The TREMOR instrument described here has dynamic range of 96 dB between ±2 g, or 102 dB between ±4 g. It is linear to <1% of full scale (FS), with a response function effectively shaped electronically. We developed an economical, very low noise, accurate (<1%FS) temperature compensation method. Displacement is easily recovered to 10-cm accuracy at full bandwidth, and better with care. We deployed prototype instruments in Oakland, California, beginning in 1998, with 13 now at mean spacing of ∼3 km—one of the most densely instrumented urban centers in the United States. This array is among the quickest in returning (PGA, PGV, Sa) vectors to ShakeMap, ∼75 to 100 s. Some 13 events have been recorded. A ShakeMap and an example of spatial variability are shown. Extensive tests of the prototypes for a commercial instrument are described here and in a companion paper.


Sign in / Sign up

Export Citation Format

Share Document