scholarly journals A cloud-ozone data product from Aura OMI and MLS satellite measurements

2017 ◽  
Vol 10 (11) ◽  
pp. 4067-4078 ◽  
Author(s):  
Jerald R. Ziemke ◽  
Sarah A. Strode ◽  
Anne R. Douglass ◽  
Joanna Joiner ◽  
Alexander Vasilkov ◽  
...  

Abstract. Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004–April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of  ∼ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden–Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.

2017 ◽  
Author(s):  
Jerald R. Ziemke ◽  
Sarah A. Strode ◽  
Anne R. Douglass ◽  
Joanna Joiner ◽  
Alexander Vasilkov ◽  
...  

Abstract. Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions, and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low troposphere/boundary layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product, monthly-mean ozone concentrations in deep convective clouds between 30° S to 30° N for October 2004–April 2016. These measurements reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of ~ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intra-seasonal/Madden-Julian Oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary layer pollution and elevated ozone inside thick clouds over land-mass regions including southern Africa and India/east Asia.


1985 ◽  
Vol 15 (1-2) ◽  
pp. 77-120 ◽  
Author(s):  
P.J. Crutzen ◽  
M.T. Coffey ◽  
A.C. Delany ◽  
J. Greenberg ◽  
P. Haagenson ◽  
...  

Field measurement programs in Brazil during the dry season months of August and September in 1979 and 1980 have demonstrated the great importance of the continental tropics in global air chemistry. Especially in the mixed layer, the air composition over land is much different from that over the ocean and the land areas are clearly longe scale sources of many inportant trace gases. During the dry season much biomass, burning takes place especially in the cerrado regions leading to substantial emission of air pollutants, such as CO, NOx, N2O, CH4 and other hydrocarbons. Ozone concentrations are alsoenhanced due to photochemical reactions. Biogenic organic emissions from tropical forests play likewise an important role in the photochemistry of the atmosphere. Carbon monoxide was found to be present in high concentrations in the boundary layer of the tropical forest, but ozone concentrations were much lower than in the cerrado.


2014 ◽  
Vol 14 (11) ◽  
pp. 15953-16000 ◽  
Author(s):  
E. M. Neemann ◽  
E. T. Crosman ◽  
J. D. Horel ◽  
L. Avey

Abstract. Numerical simulations are used to investigate the meteorological characteristics of the 1–6 February 2013 cold-air pool in the Uintah Basin, Utah, and the resulting high ozone concentrations. Flow features affecting cold-air pools and air quality in the Uintah Basin are studied, including: penetration of clean air into the basin from across the surrounding mountains, elevated easterlies within the inversion layer, and thermally-driven slope and valley flows. The sensitivity of the boundary layer structure to cloud microphysics and snow cover variations are also examined. Ice-dominant clouds enhance cold-air pool strength compared to liquid-dominant clouds by increasing nocturnal cooling and decreasing longwave cloud forcing. Snow cover increases boundary layer stability by enhancing the surface albedo, reducing the absorbed solar insolation at the surface, and lowering near-surface air temperatures. Snow cover also increases ozone levels by enhancing solar radiation available for photochemical reactions.


2014 ◽  
Vol 14 (23) ◽  
pp. 13223-13240 ◽  
Author(s):  
W. Frey ◽  
S. Borrmann ◽  
F. Fierli ◽  
R. Weigel ◽  
V. Mitev ◽  
...  

Abstract. The case study presented here focuses on the life cycle of clouds in the anvil region of a tropical deep convective system. During the SCOUT-O3 campaign from Darwin, Northern Australia, the Hector storm system has been probed by the Geophysica high-altitude aircraft. Clouds were observed by in situ particle probes, a backscatter sonde, and a miniature lidar. Additionally, aerosol number concentrations have been measured. On 30 November 2005 a double flight took place and Hector was probed throughout its life cycle in its developing, mature, and dissipating stage. The two flights were four hours apart and focused on the anvil region of Hector in altitudes between 10.5 and 18.8 km (i.e. above 350 K potential temperature). Trajectory calculations, satellite imagery, and ozone measurements have been used to ensure that the same cloud air masses have been probed in both flights. The size distributions derived from the measurements show a change not only with increasing altitude but also with the evolution of Hector. Clearly different cloud to aerosol particle ratios as well as varying ice crystal morphology have been found for the different development stages of Hector, indicating different freezing mechanisms. The development phase exhibits the smallest ice particles (up to 300 μm) with a rather uniform morphology. This is indicative for rapid glaciation during Hector's development. Sizes of ice crystals are largest in the mature stage (larger than 1.6 mm) and even exceed those of some continental tropical deep convective clouds, also in their number concentrations. The backscatter properties and particle images show a change in ice crystal shape from the developing phase to rimed and aggregated particles in the mature and dissipating stages; the specific shape of particles in the developing phase cannot be distinguished from the measurements. Although optically thin, the clouds in the dissipating stage have a large vertical extent (roughly 6 km) and persist for at least 6 h. Thus, the anvils of these high-reaching deep convective clouds have a high potential for affecting the tropical tropopause layer by modifying the humidity and radiative budget, as well as for providing favourable conditions for subvisible cirrus formation. The involved processes may also influence the amount of water vapour that ultimately reaches the stratosphere in the tropics.


2020 ◽  
Vol 20 (4) ◽  
pp. 2201-2219
Author(s):  
Constanze Wellmann ◽  
Andrew I. Barrett ◽  
Jill S. Johnson ◽  
Michael Kunz ◽  
Bernhard Vogel ◽  
...  

Abstract. Severe hailstorms have the potential to damage buildings and crops. However, important processes for the prediction of hailstorms are insufficiently represented in operational weather forecast models. Therefore, our goal is to identify model input parameters describing environmental conditions and cloud microphysics, such as the vertical wind shear and strength of ice multiplication, which lead to large uncertainties in the prediction of deep convective clouds and precipitation. We conduct a comprehensive sensitivity analysis simulating deep convective clouds in an idealized setup of a cloud-resolving model. We use statistical emulation and variance-based sensitivity analysis to enable a Monte Carlo sampling of the model outputs across the multi-dimensional parameter space. The results show that the model dynamical and microphysical properties are sensitive to both the environmental and microphysical uncertainties in the model. The microphysical parameters lead to larger uncertainties in the output of integrated hydrometeor mass contents and precipitation variables. In particular, the uncertainty in the fall velocities of graupel and hail account for more than 65 % of the variance of all considered precipitation variables and for 30 %–90 % of the variance of the integrated hydrometeor mass contents. In contrast, variations in the environmental parameters – the range of which is limited to represent model uncertainty – mainly affect the vertical profiles of the diabatic heating rates.


2015 ◽  
Vol 15 (1) ◽  
pp. 135-151 ◽  
Author(s):  
E. M. Neemann ◽  
E. T. Crosman ◽  
J. D. Horel ◽  
L. Avey

Abstract. Numerical simulations are used to investigate the meteorological characteristics of the 31 January–6 February 2013 cold-air pool in the Uintah Basin, Utah, and the resulting high ozone concentrations. Flow features affecting cold-air pools and air quality in the Uintah Basin are studied, including the following: penetration of clean air into the basin from across the surrounding mountains, elevated easterlies within the inversion layer, and thermally driven slope and valley flows. The sensitivity of the boundary layer structure to snow cover variations and cloud microphysics are also examined. Snow cover increases boundary layer stability by enhancing the surface albedo, reducing the absorbed solar insolation at the surface, and lowering near-surface air temperatures. Snow cover also increases ozone levels by enhancing solar radiation available for photochemical reactions. Ice-dominant clouds enhance cold-air pool strength compared to liquid-dominant clouds by increasing nocturnal cooling and decreasing longwave cloud forcing.


2020 ◽  
Author(s):  
Sarthak Srivastava ◽  
Amal Chandran

<p>Ionospheric Total Electron Content (TEC) data from ground-based Global Positioning System (GPS) receiver networks have been used previously to detect Travelling Ionospheric Disturbances (TIDs). The TIDs have been shown to arise through coupling of lower atmosphere with the Ionosphere with Gravity Waves as the coupling mechanism. Gravity Waves generated by earthquakes, tsunamis, volcanoes, topography, convection and even solar eclipses have been detected using GPS TEC data. In this study, we identify Gravity Wave signatures in GPS TEC data derived from the Sumatran GPS Array (SuGAr) network. SuGAr is a network of 49 ground-based GPS stations along the convergent plate boundary between Indo-Australian and Asian tectonic plates in western Sumatra, Indonesia. Since initiation in 2002, data from SuGAr has primarily been used to study earthquakes and plate-tectonics in south-east Asia. Due to its location along the seismically-active region, SuGAr can provide valuable data for studying co-seismic Gravity Waves triggered by terrestrial-atmosphere coupling. Frequent occurrence of deep convective clouds in tropical region implies that SuGAr data also provides a unique opportunity to study atmospheric waves generated by convection. </p><p>We have identified Gravity Waves across a wide spectrum corresponding to seismic and tropical convection events in Sumatran region. Upon identifying the wave signatures, we characterized the wave parameters and identified the wave sources through suitable ray tracing calculations. In this paper we show acoustic-gravity waves generated by the 2012 Sumatra great earthquake sequence consisting of 2 largest strike slip earthquakes ever recorded. Spectral analysis indicates the presence of fundamental resonant frequencies for solid Earth-atmosphere coupling. Using a geometric ray tracing method, we also trace the waves very close to the reported epicentres of the double earthquake sequence. We also discuss inertia-gravity waves generated due to convection in South-East Asia using SuGAr TEC data for 2018. Indication of deep convective clouds is confirmed through satellite-based cloud top brightness temperature data.  Ray tracing is performed to further trace the observed waves to the convective system location.</p>


Sign in / Sign up

Export Citation Format

Share Document